Lecture 19: Simple Applications of Fourier Analysis \& Convolution

- Let $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ be a function
- Let $N=2^{n}$
- Inner product of two functions is defined as follows

$$
\langle f, g\rangle:=\frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x) g(x)
$$

- For $S \in\{0,1\}^{n}$, define the function $\chi_{S}(x)=(-1)^{S \cdot x}$
- $\left\{\chi_{S}\right\}_{S \in\{0,1\}^{n}}$ forms an orthonormal basis
- We can write any function as follows

$$
f=\sum_{S \in\{0,1\}^{n}} \widehat{f}(S) \chi_{S},
$$

where $\widehat{f}(S)=\langle f, \chi s\rangle$

- Parseval's Identity:

$$
\frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x)^{2}=\langle f, f\rangle=\sum_{S \in\{0,1\}^{n}} \widehat{f}(S)^{2}
$$

- The mapping $f \mapsto \widehat{f}$ is a linear bijection
- And, $\widehat{(\widehat{f})}=\frac{1}{N} f$
- For a constant α, we have $\widehat{\alpha f}=\alpha \widehat{f}$
- For two functions f and g, we have $(\widehat{f+g})=\widehat{f}+\widehat{g}$
- For a $c \in\{0,1\}^{n}$, suppose we have $f(x)=g(x+c)$

$$
\begin{aligned}
\widehat{f}(S) & =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x) \chi_{S}(x) \\
& =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} g(x+c) \chi_{S}(x) \\
& =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} g(x+c) \chi_{S}(x+c) \chi_{S}(c) \\
& =\chi_{c}(S) \widehat{g}(S)
\end{aligned}
$$

So, we have $\widehat{f}=\chi_{c} \widehat{g}$

Binary Output Functions

- We will interpret binary functions as $f:\{0,1\}^{n} \rightarrow\{+1,-1\}$
- A Note: Traditionally, a binary function g is $g:\{0,1\}^{n} \rightarrow\{0,1\}$. We consider an equivalent function $f:\{0,1\}^{n} \rightarrow\{+1,-1\}$ defined by $f(x)=(-1)^{g(x)}$, or $f(x)=1-2 g(x)$. Intuitively, the traditional binary output is mapped as follows: $0 \mapsto+1$ and $1 \mapsto-1$

Claim

Let $f:\{0,1\}^{n} \rightarrow\{+1,-1\}$ be a binary function. We have

$$
\sum_{S \in\{0,1\}^{n}} \widehat{f}(S)^{2}=1
$$

Follows from Parseval's Identity

Distributions as Functions

- Let F be a distribution over the sample space $\{0,1\}^{n}$
- Let $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ be the corresponding function defined by

$$
f(x)=\mathbb{P}[F=x]
$$

- When we say that f is a distribution, we mean that there exists an associated F as mentioned above such that F is a probability distribution

Properties of Interesting Distributions

Claim

Let $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ be a distribution. Then, we have $\widehat{f}(\emptyset)=\frac{1}{N}$.

Proof.

$$
\begin{aligned}
\widehat{f}(\emptyset) & =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x) \chi_{\emptyset}(x) \\
& =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x) \cdot 1=\frac{1}{N}
\end{aligned}
$$

Claim

Let $f=\mathbb{U}_{\{0,1\}^{n}}$, i.e. it is the uniform distribution over $\{0,1\}^{n}$.
Then, we have $\widehat{f}=\delta_{0^{n}} / N$.

Proof.

$$
\begin{aligned}
\widehat{f}(S) & =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x) \chi_{S}(x) \\
& =\frac{1}{N^{2}} \sum_{x \in\{0,1\}^{n}} \chi_{S}(x) \\
& = \begin{cases}\frac{1}{N}, & \text { if } S=\emptyset \\
0, & \text { if } S \neq \emptyset\end{cases}
\end{aligned}
$$

Claim

Let $f=\delta_{0^{n}}$, it is the probability distribution that always outputs 0^{n}. Then, we have $\widehat{f}=\mathbb{U}_{\{0,1\}^{n}}$.

Use the previous result and the fact that $(\widehat{f})=f / N$

Properties of Interesting Distributions

This result generalizes both the previous results.

Claim

Let $V \subseteq\{0,1\}^{n}$ be a vector space. Let $f=\mathbb{U}_{V}$ be the uniform distribution over the vector space V. Then, we have $\widehat{f}=1_{V \perp} / N$.

Proof.
Part 1: Let $S \in \mathbb{V}^{\perp}$.

$$
\begin{aligned}
\widehat{f}(S) & =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x) \chi_{S}(x)=\frac{1}{N} \sum_{x \in V} \frac{1}{|V|}(-1)^{S \cdot x} \\
& =\frac{1}{N} \sum_{x \in V} \frac{1}{|V|} \cdot 1=\frac{1}{N}
\end{aligned}
$$

Properties of Interesting Distributions

Proof.

Part 2: By Parseval's Identity, we have

$$
\begin{aligned}
\sum_{S \notin V^{\perp}} \widehat{f}(S)^{2} & =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x)^{2}-\sum_{S \in V^{\perp}} \widehat{f}(S)^{2} \\
& =\frac{1}{N} \sum_{x \in V} f(x)^{2}-\sum_{S \in V^{\perp}} \widehat{f}(S)^{2} \\
& =\frac{1}{N}|V|\left(\frac{1}{|V|}\right)^{2}-\left|V^{\perp}\right|\left(\frac{1}{N}\right)^{2}=\frac{1}{|V|}-\frac{N}{|V|} \cdot \frac{1}{N^{2}}=0
\end{aligned}
$$

This implies that $\widehat{f}(S)=0$ for all $S \notin V^{\perp}$.

Exercise: Compute $(\widehat{c+f})$, where $c \in \mathbb{R}$ is a constant and $f:\{0,1\}^{n} \rightarrow \mathbb{R}$

- A distribution X has min-entropy at least k, represented by $H_{\infty}(X) \geqslant k$, if $\mathbb{P}[X=x] \leqslant 2^{-k}$

Claim

Let f be a probability distribution with min-entropy at least k. Then, we have:

$$
\sum_{S \in\{0,1\}^{n}} \widehat{f}(S)^{2} \leqslant \frac{1}{N K}
$$

where $K=2^{k}$.

Proof.

By Parseval's Identity we have

$$
\begin{aligned}
\sum_{S \in\{0,1\}^{n}} \widehat{f}(S)^{2} & =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x)^{2} \\
& \leqslant \frac{1}{N} \sum_{x \in\{0,1\}^{n}} f(x) \cdot \frac{1}{K} \\
& =\frac{1}{N K} \sum_{x \in\{0,1\}^{n}} f(x)=\frac{1}{N K}
\end{aligned}
$$

Claim

Let f and g be two distributions over $\{0,1\}^{n}$. Then, we have

$$
2 \mathrm{SD}(f, g) \leqslant N\left(\sum_{\emptyset \neq S \in\{0,1\}^{n}}(\widehat{f}(S)-\widehat{g}(S))^{2}\right)^{1 / 2}
$$

$$
\begin{aligned}
2 \operatorname{SD}(f, g) & =\sum_{x \in\{0,1\}^{n}}|f(x)-g(x)| \\
& \leqslant\left(\sum_{x \in\{0,1\}^{n}}(f(x)-g(x))^{2}\right)^{1 / 2} N^{1 / 2} \quad \text { By Cauchy-Schwarz } \\
& =N\left(\frac{1}{N} \sum_{x \in\{0,1\}^{n}}(f(x)-g(x))^{2}\right)^{1 / 2} \\
& =N\left(\frac{1}{N} \sum_{x \in\{0,1\}^{n}}(f-g)(x)^{2}\right)^{1 / 2}
\end{aligned}
$$

$$
\begin{array}{rlr}
2 \operatorname{SD}(f, g) & \leqslant N\left(\frac{1}{N} \sum_{x \in\{0,1\}^{n}}(f-g)(x)^{2}\right)^{1 / 2} & \\
& =N\left(\sum_{S \in\{0,1\}^{n}}(\widehat{f-g})(S)^{2}\right)^{1 / 2} & \text { By Parseval's } \\
& =N\left(\sum_{S \in\{0,1\}^{n}}(\widehat{f}(S)-\widehat{g}(S))^{2}\right)^{1 / 2} \quad \text { By Parseval's } \\
& =N\left(\sum_{\emptyset \neq S \in\{0,1\}^{n}}(\widehat{f}(S)-\widehat{g}(S))^{2}\right)^{1 / 2} \quad \because \widehat{f}(\emptyset)=\widehat{g}(\emptyset)=1 / N
\end{array}
$$

Corollary

Let f be a distributions over $\{0,1\}^{n}$. Then, we have

$$
2 \operatorname{SD}\left(f, \mathbb{U}_{\{0,1\}^{n}}\right) \leqslant N\left(\sum_{\emptyset \neq S \in\{0,1\}^{n}} \widehat{f}(S)^{2}\right)^{1 / 2}
$$

Use the previous result and the fact that $\widehat{\mathbb{U}_{\{0,1\}^{n}}}=\delta_{0^{n}} / N$

- Let \mathbb{F} and \mathbb{G} be two probability distributions over $\{0,1\}^{n}$
- Let \mathbb{H} be a new distribution defined by the following sampling procedure:
- Sample $a \sim \mathbb{F}$
- Sample $b \sim \mathbb{G}$
- Output $a+b$
- We will represent this as $\mathbb{H}=\mathbb{F} \oplus \mathbb{G}$
- Note that we have

$$
\mathbb{P}[\mathbb{H}=x]=\sum_{y \in\{0,1\}^{n}} \mathbb{P}[\mathbb{F}=y] \cdot \mathbb{P}[\mathbb{G}=x-y]
$$

- Let f, g, and h be the functions corresponding to the distributions \mathbb{F}, \mathbb{G}, and \mathbb{H}, respectively. That is,

$$
h(x)=\sum_{y \in\{0,1\}^{n}} f(y) g(x-y)
$$

Definition (Convolution)

Let $f, g:\{0,1\}^{n} \rightarrow \mathbb{R}$. The convolution of f and g, represented by $(f * g)$, is the function h such that

$$
h(x)=\sum_{y \in\{0,1\}^{n}} f(y) g(x-y)
$$

We emphasize that this definition is not specific to probability distributions f and g, but for all functions. When f and g happen to be probability distributions, then the function h corresponds to the probability distribution corresponding to the sampling procedure mentioned above

$$
\widehat{(f * g)}=N \cdot \widehat{f} \widehat{g}
$$

$$
\begin{aligned}
\widehat{(f * g)}(S) & =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} h(x) \chi s(x) \\
& =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} \sum_{y \in\{0,1\}^{n}} f(y) g(x-y) \chi s(x) \\
& =\frac{1}{N} \sum_{x \in\{0,1\}^{n}} \sum_{y \in\{0,1\}^{n}} f(y) g(x-y) \chi s(y) \chi_{s}(x-y) \\
& =\frac{1}{N} \sum_{y \in\{0,1\}^{n}} \sum_{x-y \in\{0,1\}^{n}} f(y) g(x-y) \chi s(y) \chi s(x-y) \\
& =N\left(\frac{1}{N} \sum_{y \in\{0,1\}^{n}} f(y) \chi_{s}(y)\right)\left(\frac{1}{N} \sum_{z \in\{0,1\}^{n}} g(z) \chi_{s}(z)\right) \\
& =N \widehat{f}(S) \widehat{g}(S)
\end{aligned}
$$

An alternate proof for computing the Fourier Transform of a function that is the uniform distribution over a vector subspace V.

- Let V and W be two vector subspaces of $\{0,1\}^{n}$
- Let $Z=\operatorname{sp}(V, W)$
- Prove that: $\mathbb{U}_{Z}=\mathbb{U}_{V} \oplus \mathbb{U}_{W}$
- Prove that: $Z^{\perp}=V^{\perp} \cap W^{\perp}$
- Use induction on the dimension of V to prove that

$$
\widehat{\mathbb{U}_{V}}=1_{V \perp} / N
$$

