Lecture 18: Discrete Fourier Analysis on the Boolean Hypercube (Introduction)

Focus of Study

- Functions with domain $\{0,1\}^n$ and range $\mathbb R$
- Let $f: \{0,1\}^n \to \mathbb{R}$
- We will always use $N = 2^n$
- The *n*-bit binary strings will be canonically interpreted as the integer in the range $\{0, \dots, N-1\}$
- We equivalently interpret f as a vector in \mathbb{R}^n

$$(f(0), f(1), \ldots, f(N-1))$$

Basis Functions

• For $S \in \{0,1\}^n$, we will define the following function:

$$\chi_{\mathcal{S}}(x) := (-1)^{\sum_{i=1}^{n} S_i x_i}$$

• Note that S is generally interpreted as a subset of $\{1, \ldots, n\}$. But the interpretation presented here is equivalent. I personally prefer this because it generalizes to other function domains.

Inner Product

Definition

The inner-product of two functions f and g is defined as follows:

$$\langle f,g\rangle := \frac{1}{N} \sum_{x \in \{0,1\}^n} f(x)g(x)$$

Claim

$$\sum_{x \in \{0,1\}^n} \chi_R(x) = \begin{cases} 0, & \text{if } R \neq \emptyset \\ N, & \text{if } R = \emptyset \end{cases}$$

Proof.

For $R = \emptyset$, the proof is trivial. Assume that $R = \{i_1, \dots, i_r\}$, where $r \geqslant 1$.

$$\sum_{x \in \{0,1\}^n} \chi_R(x) = \sum_{x_1 \in \{0,1\}} \cdots \sum_{x_1 \in \{0,1\}} (-1)^{\sum_{k=1}^r x_{i_k}}$$

$$= \frac{N}{2^r} \sum_{x_{i_1} \in \{0,1\}} \cdots \sum_{x_{i_r} \in \{0,1\}} (-1)^{\sum_{k=1}^r x_{i_k}}$$

$$= \frac{N}{2^r} \sum_{(x_{i_1}, \dots, x_{i_{r-1}}) \in \{0,1\}^{r-1}} (-1)^{\sum_{k=1}^{r-1} x_{i_k}} \sum_{x_{i_r} \in \{0,1\}} (-1)^{x_{i_r}}$$

$$= \frac{N}{2^r} \sum_{(x_{i_1}, \dots, x_{i_{r-1}}) \in \{0,1\}^{r-1}} (-1)^{\sum_{k=1}^{r-1} x_{i_k}} \cdot 0$$

$$= 0$$

Orthonormality of Basis Functions

Lemma

$$\langle \chi_{\mathcal{S}}, \chi_{\mathcal{T}} \rangle = \begin{cases} 0, & \text{if } S \neq T \\ 1, & \text{if } S = T \end{cases}$$

We use the previous claim to prove this result.

Proof.

$$\langle \chi_S, \chi_T \rangle = \frac{1}{N} \sum_{x \in \{0,1\}^n} \chi_S(x) \chi_T(x)$$

$$= \frac{1}{N} \sum_{x \in \{0,1\}^n} \chi_R(x), \text{ where } R = S \Delta T$$

$$= \begin{cases} 0, & \text{if } S \neq T \\ 1, & \text{if } S = T \end{cases}$$

Fourier Coefficients

- Given $f: \{0,1\}^n \to \mathbb{R}$
- ullet We define a new function $\widehat{f}\colon \left\{0,1\right\}^n o \mathbb{R}$

$$\widehat{f}(S) := \langle f, \chi_S \rangle$$

 \bullet The Fourier Transform maps f to \widehat{f}

Fourier Transform is a Linear Bijection

Let

$$\mathcal{F} = \frac{1}{N} \begin{pmatrix} \chi_0(0) & \chi_1(0) & \dots & \chi_{N-1}(0) \\ \chi_0(1) & \chi_1(1) & \dots & \chi_{N-1}(1) \\ \vdots & \vdots & \ddots & \vdots \\ \chi_0(N-1) & \chi_1(N-1) & \dots & \chi_{N-1}(N-1) \end{pmatrix}$$

- Verify that $f \cdot \mathcal{F} = \widehat{f}$
- This proves that the Fourier Transform is a linear mapping
- ullet To prove that this is a bijection, prove that $\mathcal{F}\cdot(N\mathcal{F})=I_{N imes N}$

Fourier Representation

- We can write f as a linear combination of the Fourier Basis Functions
- So, we have

$$f = \sum_{S \in \{0,1\}^n} \widehat{f}(S) \chi_S$$

Inner-product of Functions

Lemma

$$\langle f,g
angle = \sum_{S\in\{0,1\}^n} \widehat{f}(S)\widehat{g}(S)$$

Proof.

$$\begin{aligned} \langle f, g \rangle &= \left\langle \sum_{S \in \{0,1\}^n} \widehat{f}(S) \chi_S, \sum_{T \in \{0,1\}^n} \widehat{g}(T) \chi_T \right\rangle \\ &= \sum_{S \in \{0,1\}^n} \widehat{f}(S) \left\langle \chi_S, \sum_{T \in \{0,1\}^n} \widehat{g}(T) \chi_T \right\rangle \\ &= \sum_{S,T \in \{0,1\}^n} \widehat{f}(S) \widehat{g}(T) \langle \chi_S, \chi_T \rangle \\ &= \sum_{S \in \{0,1\}^n} \widehat{f}(S) \widehat{g}(S) \end{aligned}$$

290

Parseval's Identity

Lemma

$$\frac{1}{N} \sum_{x \in \{0,1\}^n} f(x)^2 = \sum_{S \in \{0,1\}^n} \widehat{f}(S)^2$$

Follows from the previous expression for $\langle f, f \rangle$

Consequences of Linearity of the Fourier Transform

•
$$\widehat{(cf)} = c\widehat{f}$$

•
$$\widehat{(cf)} = c\widehat{f}$$

• $\widehat{(f+g)} = \widehat{f} + \widehat{g}$

Fourier of a Fourier

Lemma

$$\widehat{\widehat{(f)}} = \frac{1}{N}f$$

Follows from the fact that $\mathcal{F} \cdot \mathcal{F} = \frac{1}{N} I_{N \times N}$

Fourier of an offset

Lemma

Suppose f(x) = g(x + c), for all $x \in \{0, 1\}^n$. Then $\widehat{f}(S) = \chi_c(S)\widehat{g}(S)$, for all $S \in \{0, 1\}^n$.

Proof.

$$\langle f, \chi_S \rangle = \frac{1}{N} \sum_{x \in \{0,1\}^n} f(x) \chi_S(x)$$

$$= \frac{1}{N} \sum_{x \in \{0,1\}^n} g(x+c) \chi_S(x)$$

$$= \frac{1}{N} \chi_S(c) \sum_{x \in \{0,1\}^n} g(x+c) \chi_S(x+c)$$

$$= \chi_c(S) \widehat{g}(S)$$