
Lecture 16: Shannon’s Coding Theorem
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Binary Symmetric Channel

Recall that a B(1, p) is a distribution over the sample space
{0, 1} such that B(1, p) outputs 1 with probability p

Definition (Binary Symmetric Channel)

For ε ∈ (0, 1/2), an ε-binary symmetric channel, represented as
ε-BSC, is a noisy channel that takes as input a bit b and outputs a
bit b̃ := b + B(1, ε).

Intuitively, the channel flips each input bit independently with
probability ε
If an n-bit string c is passed through the channel, then the
output string is expected to have nε errors
By concentration inequalities, if an n-bit string c is passed
through the channel, then the output string has at most
(ε+ δ)n errors with probability 6 exp(−2δ2n/ε).
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Original Motivation for Error-correcting Codes

Intuitively: Our goal is to “reliably transmit” messages over
ε-BSC with minimum “per-bit overhead”
Formalization:

A sender wants to reliably send a message m ∈ {0, 1}k to a
receiver
The sender encodes m into a codeword c ∈ {0, 1}n and sends
c over the ε-BSC
The receiver obtains the erroneous string c̃ , finds the closest
codeword c ′ to c̃ , and outputs the message m′ corresponding
to c ′

We want P
[
m = m′

]
> 1− 2−λn while minimizing n/k

Intuitively, the overhead of reliably transmitting a k-bit
messages is (n − k) bits. So, we the “per-bit overhead” is
(n − k)/k . Or, equivalently, we minimize n/k
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(A very special form of) Shannon’s Coding Theorem

Definition (Rate of a Code)

An [n, k]2 code has rate k/n.

For every channel, there exists a number called its capacity
C ∈ (0, 1) that measures the reliability of the channel
For ε-BSC, we have C = 1− h2(ε)

Theorem (Shannon’s Theorem)

For every channel and threshold τ , there exists a code with rate
R > C − τ that reliably transmits over this channel, where C is the
capacity of the channel. Such a code is referred to as capacity
achieving.

The capacity achieving code for a channel need not be linear
The capacity achieving code for ε-BSC happens to be linear
In general, the best rate of linear codes to reliably transmit
over a channel can be significantly smaller than its capacity
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What we will prove

We will show the following.
For all ε, we can construct a random binary linear code (with
probability 1− 2−αn) that has rate R = 1− h2(ε)− τ and
reliably transmits messages over ε-BSC correctly with
probability 1− 2−λn

You have already proven this in your homework problem! We will
provide an alternate proof.
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Randomized Construction

For an ε-BSC, we choose the following parameters.
Let δ be such that 1− exp(−2δ2n/ε) > 1− 2−λn

Let d = 2(ε+ δ)n + 1
τ is a parameter that is chosen based on d and α that will be
explained later
We choose k/n = R = 1− h2(ε)− τ

Randomized Construction.
Generate a random P ∈ {0, 1}k×(n−k) matrix and output the
code generated by G =

[
Tk×k‖P

]
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Proof I

Note that the code is always an [n, k]2 code with rate
R = 1− h2(ε)− τ
Note that the channel introduces at most (ε+ δ)n errors with
probability > 1− 2−λn

Conditioned on the introduction of at most (ε+ δ)n errors by
the channel, we can always correctly recover the transmitted
message with probability 1, if the distance of the code is
d > 2(ε+ δ)n + 1

So, all that remains to argue is the following. The code
generated by G has distance > 2(ε+ δ)n + 1 with probability
1− 2−αn
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Proof II

Let C be the code generated by the matrix G

Let H =
[
−P>‖In−k×n−k

]
be the generator matrix of the dual

code of C
Suppose there exists a weight w codeword in C. Suppose the
codeword is c and it has 1 only at positions i1 < i2 < · · · < iw .

This implies that the sum of the columns {i1, . . . , iw} of H is
the 0-column

The probability of these w columns adding up to the 0-column
is 6 2−(n−k)
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Proof III

The probability that some 6 w columns of H add up to
0-column is at most (by union bound)

w∑
i=0

(
n
i

)
2−(n−k) = Vol2(w , n)2−(n−k) 6 2h2(w/n)n · 2−(n−k)

The probability that some 6 (ε+ δ)n columns of H add up to
0-column is

6 2−( 1−R−h2(ε+δ) )n

Recall, we have set R = 1− h2(ε)− τ and τ is a parameter we
need to choose
Suppose we choose τ such that

2−( 1−R−h2(ε+δ) )n 6 2−αn

then we will done
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Proof IV

So, we choose τ such that

1− R − h2(ε+ δ) > α

⇐⇒ h2(ε) + τ − h2(ε+ δ) > α

⇐⇒ τ > α+
(
h2(ε+ δ)− h2(ε)

)

Shannon’s Coding Theorem


