Lecture 16: Shannon's Coding Theorem

Binary Symmetric Channel

- Recall that a $B(1, p)$ is a distribution over the sample space $\{0,1\}$ such that $B(1, p)$ outputs 1 with probability p

Definition (Binary Symmetric Channel)

For $\varepsilon \in(0,1 / 2)$, an ε-binary symmetric channel, represented as ε-BSC, is a noisy channel that takes as input a bit b and outputs a bit $\widetilde{b}:=b+B(1, \varepsilon)$.

- Intuitively, the channel flips each input bit independently with probability ε
- If an n-bit string c is passed through the channel, then the output string is expected to have $n \varepsilon$ errors
- By concentration inequalities, if an n-bit string c is passed through the channel, then the output string has at most $(\varepsilon+\delta) n$ errors with probability $\leqslant \exp \left(-2 \delta^{2} n / \varepsilon\right)$.

Original Motivation for Error-correcting Codes

- Intuitively: Our goal is to "reliably transmit" messages over ε-BSC with minimum "per-bit overhead"
- Formalization:
- A sender wants to reliably send a message $m \in\{0,1\}^{k}$ to a receiver
- The sender encodes m into a codeword $c \in\{0,1\}^{n}$ and sends c over the ε-BSC
- The receiver obtains the erroneous string \widetilde{c}, finds the closest codeword c^{\prime} to \widetilde{c}, and outputs the message m^{\prime} corresponding to c^{\prime}
- We want $\mathbb{P}\left[m=m^{\prime}\right] \geqslant 1-2^{-\lambda n}$ while minimizing n / k
- Intuitively, the overhead of reliably transmitting a k-bit messages is $(n-k)$ bits. So, we the "per-bit overhead" is $(n-k) / k$. Or, equivalently, we minimize n / k

(A very special form of) Shannon's Coding Theorem

Definition (Rate of a Code)

An $[n, k]_{2}$ code has rate k / n.

- For every channel, there exists a number called its capacity $C \in(0,1)$ that measures the reliability of the channel
- For ε-BSC, we have $C=1-h_{2}(\varepsilon)$

Theorem (Shannon's Theorem)

For every channel and threshold τ, there exists a code with rate $R \geqslant C-\tau$ that reliably transmits over this channel, where C is the capacity of the channel. Such a code is referred to as capacity achieving.

- The capacity achieving code for a channel need not be linear
- The capacity achieving code for ε-BSC happens to be linear
- In general, the best rate of linear codes to reliably transmit over a channel can be significantly smaller than its capacity

We will show the following.

- For all ε, we can construct a random binary linear code (with probability $1-2^{-\alpha n}$) that has rate $R=1-h_{2}(\varepsilon)-\tau$ and reliably transmits messages over ε-BSC correctly with probability $1-2^{-\lambda n}$

You have already proven this in your homework problem! We will provide an alternate proof.

Randomized Construction

For an ε-BSC, we choose the following parameters.

- Let δ be such that $1-\exp \left(-2 \delta^{2} n / \varepsilon\right) \geqslant 1-2^{-\lambda n}$
- Let $d=2(\varepsilon+\delta) n+1$
- τ is a parameter that is chosen based on d and α that will be explained later
- We choose $k / n=R=1-h_{2}(\varepsilon)-\tau$

Randomized Construction.

- Generate a random $P \in\{0,1\}^{k \times(n-k)}$ matrix and output the code generated by $G=\left[T_{k \times k} \| P\right]$
- Note that the code is always an $[n, k]_{2}$ code with rate $R=1-h_{2}(\varepsilon)-\tau$
- Note that the channel introduces at most $(\varepsilon+\delta) n$ errors with probability $\geqslant 1-2^{-\lambda n}$
- Conditioned on the introduction of at most $(\varepsilon+\delta) n$ errors by the channel, we can always correctly recover the transmitted message with probability 1 , if the distance of the code is $d \geqslant 2(\varepsilon+\delta) n+1$
- So, all that remains to argue is the following. The code generated by G has distance $\geqslant 2(\varepsilon+\delta) n+1$ with probability $1-2^{-\alpha n}$
- Let \mathcal{C} be the code generated by the matrix G
- Let $H=\left[-P^{\top} \| I_{n-k \times n-k}\right]$ be the generator matrix of the dual code of \mathcal{C}
- Suppose there exists a weight w codeword in \mathcal{C}. Suppose the codeword is c and it has 1 only at positions $i_{1}<i_{2}<\cdots<i_{w}$.
- This implies that the sum of the columns $\left\{i_{1}, \ldots, i_{w}\right\}$ of H is the 0-column
- The probability of these w columns adding up to the 0 -column is $\leqslant 2^{-(n-k)}$
- The probability that some $\leqslant w$ columns of H add up to 0 -column is at most (by union bound)

$$
\sum_{i=0}^{w}\binom{n}{i} 2^{-(n-k)}=\operatorname{Vol}_{2}(w, n) 2^{-(n-k)} \leqslant 2^{h_{2}(w / n) n} \cdot 2^{-(n-k)}
$$

- The probability that some $\leqslant(\varepsilon+\delta) n$ columns of H add up to 0 -column is

$$
\leqslant 2^{-\left(1-R-h_{2}(\varepsilon+\delta)\right) n}
$$

- Recall, we have set $R=1-h_{2}(\varepsilon)-\tau$ and τ is a parameter we need to choose
- Suppose we choose τ such that

$$
2^{-\left(1-R-h_{2}(\varepsilon+\delta)\right) n} \leqslant 2^{-\alpha n}
$$

then we will done

So, we choose τ such that

$$
\begin{aligned}
& & 1-R-h_{2}(\varepsilon+\delta) & \geqslant \alpha \\
& \Longleftrightarrow & h_{2}(\varepsilon)+\tau-h_{2}(\varepsilon+\delta) & \geqslant \alpha \\
& \Longleftrightarrow & \tau & \geqslant \alpha+\left(h_{2}(\varepsilon+\delta)-h_{2}(\varepsilon)\right)
\end{aligned}
$$

