Lecture 15: Perfect Codes & Gilbert-Varshamov Bound

Perfect Codes & GV-Bound

▶ ★ 문 ▶ ★ 문 ▶

-

- Suppose we are given a target distance d
- We are asked to choose a code $\mathcal{C} \subseteq \{0,1\}^n$ with distance d
- Our goal is to maximize $|\mathcal{C}|$

We will see two results:

- \bullet We will prove an upper-bound on how large $|\mathcal{C}|$ can be
- We will construct codes that are very large

・ロト ・ 一日 ・ ・ 日 ・

Definition (Ball)

Let \mathbb{F} be a field of size q. The ball of radius r, represented by $\text{Ball}_q(n, r)$ is the set of all elements in \mathbb{F}^n that have weight $\leq r$.

The size of $Ball_q(n, r)$ is represented by $Vol_q(n, r)$.

Note that we have

$$\operatorname{Vol}_2(n,r) = \sum_{i=0}^r \binom{n}{i}$$

Think: Generalize to arbitrary q.

Perfect Codes & GV-Bound

Definition (Convolution)

Let A and B be two subsets of \mathbb{F}^n . By A + B we represent the set $\{a + b \colon a \in A, b \in B\}$.

If $A = \{a\}$, then we write a + B to represent the set A + B.

Note that given $x \in \mathbb{F}^n$, the set of all elements in \mathbb{F}^n that are at distance $\leq r$ from x is $x + \text{Ball}_q(n, r)$.

・ロト ・部ト ・ヨト ・ヨト

Suppose we have a code $\mathcal{C} \subseteq \{0,1\}^n$ with distance d

Claim

For two distinct codewords $c,c'\in\mathcal{C}$, we have

$$(c + \mathsf{Ball}_2(n, r)) \cap (c' + \mathsf{Ball}_2(n, r)) = \emptyset,$$

where
$$r = \left\lfloor \frac{d-1}{2} \right\rfloor$$

- Suppose not
- There exists x such that $d_H(c,x) \leqslant r$ and $d_H(c',x) \leqslant r$
- By triangle inequality, we have $d_H(c,c') \leqslant 2r < d$

< ロ > < 同 > < 回 > < 回 >

- Given this claim, we can conclude that each $c + Ball_2(n, r)$, where $c \in C$, is disjoint
- So, we have

$$\begin{aligned} |\mathcal{C} + \mathsf{Ball}_2(n, r)| &= \left| \bigcup_{c \in \mathcal{C}} c + \mathsf{Ball}_2(n, r) \right| \\ &= \sum_{c \in \mathcal{C}} |c + \mathsf{Ball}_2(n, r)| \\ &= |\mathcal{C}| \cdot |\mathsf{Ball}_2(n, r)| \end{aligned}$$

• Since, $|\mathcal{C} + \text{Ball}_2(n, r)| \leq |\{0, 1\}^n| = 2^n$, we have the following result

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Upper Bound

Theorem

Let $\mathcal{C} \subseteq \{0,1\}^n$ and $d(\mathcal{C}) = d$. Then the following holds

$$|\mathcal{C}| \leqslant \frac{2^n}{\left|\mathsf{Ball}_2(n,r)\right|},$$

where
$$r = \left\lfloor \frac{d-1}{2} \right\rfloor$$
.

Definition (Perfect Codes)

Codes $\mathcal{C} \subseteq \{0,1\}^n$ with $d(\mathcal{C}) = d$ such that

$$|\mathcal{C}| = \frac{2^n}{\left|\mathsf{Ball}_2(n,r)\right|},$$

where
$$r = \left\lfloor \frac{d-1}{2} \right\rfloor$$
, are called Perfect Codes

Perfect Codes & GV-Bound

Upper Bound

We state the following theorem without proof. It provides the characterization of <u>all</u> binary linear perfect codes.

Theorem (Tietavainen and Van Lint)

The only binary linear perfect codes are

- Trivial Codes: $\{0^n\},\,\{0,1\}^n,$ and $\{0^n,1^n\}$ for odd n,
- $[2^r 1, 2^r r 1, 3]_2$ Hamming Code, and
- [23, 12, 7]₂ Golay Code.

Think: Generalize to $\mathcal{C} \subseteq \mathbb{F}^n$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Suppose we are asked to generate a large code $C \subseteq \{0,1\}^n$ such that |C| = d. We propose a greedy strategy to generate this code. Consider the following algorithm

Let C = Ø
While ({0,1}ⁿ \ (C + Ball₂(n, d - 1)) ≠ Ø):
Pick any c ∈ {0,1}ⁿ \ (C + Ball₂(n, d - 1))
Add c to C
Return C

・ロッ ・雪ッ ・ヨッ

Theorem (Gilbert-Varshamov Bound)

There exists a code C with distance d and size $\geq \left\lfloor \frac{2^n}{\operatorname{Vol}_2(n.d-1)} \right\rfloor$

- Our greedy algorithm produces one such code
- The distance is trivially true, because all codewords that are added are at distance ≥ *d* from all previous codewords
- If $|C| < \frac{2^n}{Vol_2(n,d-1)}$ then $C + Ball_2(n,d-1)$ has size $< 2^n$. So, we can choose more codewords

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・

Gilbert-Varshamov Bound III

We can, in fact, choose a binary linear code using a greedy algorithm and achieve the GV-Bound

 $V = \emptyset$

2 \mathcal{C} be the code spanned by V

- **3** While $(({0,1}^n \setminus C + Ball_2(n, d-1)) \neq \emptyset)$:
 - Pick any v in $\{0,1\}^n \setminus C + \text{Ball}_2(n,d-1)$

 - **③** Let \mathcal{C} be the code spanned by V

4 Return C

Prove the following result

Theorem

There exists an
$$[n, k, d]_2$$
 binary linear code, where $k \ge \left[\lg \frac{2^n}{\sqrt{\log(nd-1)}} \right].$

Perfect Codes & GV-Bound

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Gilbert-Varshamov Bound IV

In fact, we can randomly create a generator matrix that (roughly) achieves this bound. This has been posed as a homework problem

Generalize all these result to $\mathcal{C} \subseteq \mathbb{F}^n$.

Perfect Codes & GV-Bound