## Lecture 15: Perfect Codes \& Gilbert-Varshamov Bound

## Setting

- Suppose we are given a target distance $d$
- We are asked to choose a code $\mathcal{C} \subseteq\{0,1\}^{n}$ with distance $d$
- Our goal is to maximize $|\mathcal{C}|$

We will see two results:

- We will prove an upper-bound on how large $|\mathcal{C}|$ can be
- We will construct codes that are very large


## Definition (Ball)

Let $\mathbb{F}$ be a field of size $q$. The ball of radius $r$, represented by $\operatorname{Ball}_{q}(n, r)$ is the set of all elements in $\mathbb{F}^{n}$ that have weight $\leqslant r$.

The size of $\mathrm{Ball}_{q}(n, r)$ is represented by $\mathrm{Vol}_{q}(n, r)$.

Note that we have

$$
\mathrm{Vol}_{2}(n, r)=\sum_{i=0}^{r}\binom{n}{i}
$$

Think: Generalize to arbitrary $q$.

## Definition (Convolution)

Let $A$ and $B$ be two subsets of $\mathbb{F}^{n}$. By $A+B$ we represent the set $\{a+b: a \in A, b \in B\}$.

If $A=\{a\}$, then we write $a+B$ to represent the set $A+B$.

Note that given $x \in \mathbb{F}^{n}$, the set of all elements in $\mathbb{F}^{n}$ that are at distance $\leqslant r$ from $x$ is $x+\operatorname{Ball}_{q}(n, r)$.

## Upper Bound

Suppose we have a code $\mathcal{C} \subseteq\{0,1\}^{n}$ with distance $d$

## Claim

For two distinct codewords $c, c^{\prime} \in \mathcal{C}$, we have

$$
\left(c+\operatorname{Ball}_{2}(n, r)\right) \cap\left(c^{\prime}+\operatorname{Ball}_{2}(n, r)\right)=\emptyset,
$$

where $r=\left\lfloor\frac{d-1}{2}\right\rfloor$

- Suppose not
- There exists $x$ such that $d_{H}(c, x) \leqslant r$ and $d_{H}\left(c^{\prime}, x\right) \leqslant r$
- By triangle inequality, we have $d_{H}\left(c, c^{\prime}\right) \leqslant 2 r<d$
- Given this claim, we can conclude that each $c+\operatorname{Ball}_{2}(n, r)$, where $c \in \mathcal{C}$, is disjoint
- So, we have

$$
\begin{aligned}
\left|\mathcal{C}+\operatorname{BaIl}_{2}(n, r)\right| & =\left|\bigcup_{c \in \mathcal{C}} c+\operatorname{Ball}_{2}(n, r)\right| \\
& =\sum_{c \in \mathcal{C}}\left|c+\operatorname{BaIl}_{2}(n, r)\right| \\
& =|\mathcal{C}| \cdot\left|\operatorname{BaIl}_{2}(n, r)\right|
\end{aligned}
$$

- Since, $\left|\mathcal{C}+\operatorname{Ball}_{2}(n, r)\right| \leqslant\left|\{0,1\}^{n}\right|=2^{n}$, we have the following result


## Upper Bound

Theorem
Let $\mathcal{C} \subseteq\{0,1\}^{n}$ and $d(\mathcal{C})=d$. Then the following holds

$$
|\mathcal{C}| \leqslant \frac{2^{n}}{\left|\operatorname{Ball}_{2}(n, r)\right|},
$$

where $r=\left\lfloor\frac{d-1}{2}\right\rfloor$.

## Definition (Perfect Codes)

Codes $\mathcal{C} \subseteq\{0,1\}^{n}$ with $d(\mathcal{C})=d$ such that

$$
|\mathcal{C}|=\frac{2^{n}}{\left|\operatorname{Ball}_{2}(n, r)\right|},
$$

where $r=\left\lfloor\frac{d-1}{2}\right\rfloor$, are called Perfect Codes

## Upper Bound

We state the following theorem without proof. It provides the characterization of all binary linear perfect codes.

## Theorem (Tietavainen and Van Lint)

The only binary linear perfect codes are

- Trivial Codes: $\left\{0^{n}\right\},\{0,1\}^{n}$, and $\left\{0^{n}, 1^{n}\right\}$ for odd $n$,
- $\left[2^{r}-1,2^{r}-r-1,3\right]_{2}$ Hamming Code, and
- $[23,12,7]_{2}$ Golay Code.

Think: Generalize to $\mathcal{C} \subseteq \mathbb{F}^{n}$.

## Gilbert-Varshamov Bound I

Suppose we are asked to generate a large code $\mathcal{C} \subseteq\{0,1\}^{n}$ such that $|\mathcal{C}|=d$. We propose a greedy strategy to generate this code.
Consider the following algorithm
(1) Let $\mathcal{C}=\emptyset$
(2) While $\left(\{0,1\}^{n} \backslash\left(\mathcal{C}+\mathrm{Ball}_{2}(n, d-1)\right) \neq \emptyset\right)$ :
(1) Pick any $c \in\{0,1\}^{n} \backslash\left(\mathcal{C}+\operatorname{Ball}_{2}(n, d-1)\right)$
(2) Add $c$ to $\mathcal{C}$
(3) Return $\mathcal{C}$

## Gilbert-Varshamov Bound II

## Theorem (Gilbert-Varshamov Bound)

There exists a code $\mathcal{C}$ with distance $d$ and size $\geqslant\left\lceil\frac{2^{n}}{\operatorname{Vol}_{2}(n, d-1)}\right\rceil$

- Our greedy algorithm produces one such code
- The distance is trivially true, because all codewords that are added are at distance $\geqslant d$ from all previous codewords
- If $|\mathcal{C}|<\frac{2^{n}}{\operatorname{Vol}_{2}(n, d-1)}$ then $\mathcal{C}+\operatorname{Ball}_{2}(n, d-1)$ has size $<2^{n}$. So, we can choose more codewords


## Gilbert-Varshamov Bound III

We can, in fact, choose a binary linear code using a greedy algorithm and achieve the GV-Bound
(1) $V=\emptyset$
(2) $\mathcal{C}$ be the code spanned by $V$
(3)While $\left(\left(\{0,1\}^{n} \backslash \mathcal{C}+\operatorname{Ball}_{2}(n, d-1)\right) \neq \emptyset\right)$ :
(1) Pick any $v$ in $\{0,1\}^{n} \backslash \mathcal{C}+\operatorname{Ball}_{2}(n, d-1)$
(2) Add $v$ to $V$
© Let $\mathcal{C}$ be the code spanned by $V$
(4) Return $\mathcal{C}$

Prove the following result

## Theorem

There exists an $[n, k, d]_{2}$ binary linear code, where $k \geqslant\left\lceil\lg \frac{2^{n}}{\operatorname{Vol}_{2}(n, d-1)}\right\rceil$.

## Gilbert-Varshamov Bound IV

In fact, we can randomly create a generator matrix that (roughly) achieves this bound. This has been posed as a homework problem

Generalize all these result to $\mathcal{C} \subseteq \mathbb{F}^{n}$.

