
Lecture 15: Perfect Codes & Gilbert-Varshamov
Bound
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Setting

Suppose we are given a target distance d

We are asked to choose a code C ⊆ {0, 1}n with distance d

Our goal is to maximize |C|

We will see two results:
We will prove an upper-bound on how large |C| can be
We will construct codes that are very large
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Terminology I

Definition (Ball)

Let F be a field of size q. The ball of radius r , represented by
Ballq(n, r) is the set of all elements in Fn that have weight 6 r .

The size of Ballq(n, r) is represented by Volq(n, r).

Note that we have

Vol2(n, r) =
r∑

i=0

(
n
i

)

Think: Generalize to arbitrary q.
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Terminology II

Definition (Convolution)

Let A and B be two subsets of Fn. By A+ B we represent the set
{a+ b : a ∈ A, b ∈ B}.

If A = {a}, then we write a+ B to represent the set A+ B .

Note that given x ∈ Fn, the set of all elements in Fn that are at
distance 6 r from x is x + Ballq(n, r).
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Upper Bound I

Suppose we have a code C ⊆ {0, 1}n with distance d

Claim
For two distinct codewords c, c ′ ∈ C, we have(

c + Ball2(n, r)
)
∩
(
c ′ + Ball2(n, r)

)
= ∅,

where r =
⌊
d−1

2

⌋
Suppose not

There exists x such that dH(c , x) 6 r and dH(c
′, x) 6 r

By triangle inequality, we have dH(c , c
′) 6 2r < d
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Upper Bound II

Given this claim, we can conclude that each c + Ball2(n, r),
where c ∈ C, is disjoint
So, we have

∣∣C + Ball2(n, r)
∣∣ =
∣∣∣∣∣∣
⋃
c∈C

c + Ball2(n, r)

∣∣∣∣∣∣
=
∑
c∈C

∣∣c + Ball2(n, r)
∣∣

= |C| ·
∣∣Ball2(n, r)∣∣

Since,
∣∣C + Ball2(n, r)

∣∣ 6 ∣∣{0, 1}n∣∣ = 2n, we have the following
result
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Upper Bound III

Theorem
Let C ⊆ {0, 1}n and d(C) = d . Then the following holds

|C| 6 2n∣∣Ball2(n, r)∣∣ ,
where r =

⌊
d−1

2

⌋
.

Definition (Perfect Codes)

Codes C ⊆ {0, 1}n with d(C) = d such that

|C| = 2n∣∣Ball2(n, r)∣∣ ,
where r =

⌊
d−1

2

⌋
, are called Perfect Codes
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Upper Bound IV
We state the following theorem without proof. It provides the
characterization of all binary linear perfect codes.

Theorem (Tietavainen and Van Lint)

The only binary linear perfect codes are
Trivial Codes: {0n}, {0, 1}n, and {0n, 1n} for odd n,
[2r − 1, 2r − r − 1, 3]2 Hamming Code, and
[23, 12, 7]2 Golay Code.

Think: Generalize to C ⊆ Fn.
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Gilbert-Varshamov Bound I

Suppose we are asked to generate a large code C ⊆ {0, 1}n such
that |C| = d . We propose a greedy strategy to generate this code.
Consider the following algorithm

1 Let C = ∅
2 While ({0, 1}n \

(
C + Ball2(n, d − 1)

)
6= ∅):

1 Pick any c ∈ {0, 1}n \
(
C + Ball2(n, d − 1)

)
2 Add c to C

3 Return C
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Gilbert-Varshamov Bound II

Theorem (Gilbert-Varshamov Bound)

There exists a code C with distance d and size >
⌈

2n
Vol2(n,d−1)

⌉
Our greedy algorithm produces one such code

The distance is trivially true, because all codewords that are
added are at distance > d from all previous codewords

If |C| < 2n
Vol2(n,d−1) then C + Ball2(n, d − 1) has size < 2n. So,

we can choose more codewords
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Gilbert-Varshamov Bound III

We can, in fact, choose a binary linear code using a greedy
algorithm and achieve the GV-Bound

1 V = ∅
2 C be the code spanned by V
3 While (

(
{0, 1}n \ C + Ball2(n, d − 1)

)
6= ∅):

1 Pick any v in {0, 1}n \ C + Ball2(n, d − 1)
2 Add v to V
3 Let C be the code spanned by V

4 Return C

Prove the following result

Theorem
There exists an [n, k , d ]2 binary linear code, where
k >

⌈
lg 2n

Vol2(n,d−1)

⌉
.
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Gilbert-Varshamov Bound IV
In fact, we can randomly create a generator matrix that (roughly)
achieves this bound. This has been posed as a homework problem

Generalize all these result to C ⊆ Fn.
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