Lecture 14: Linear Codes: Examples and Properties

< A > <

- \bullet Given a field $(\mathbb{F},+,\cdot)$
- We consider the set of all *n*-tuples with entries in $\mathbb F$
- That is, we will consider the set \mathbb{F}^n
- $\bullet\,$ The total number of elements in the set if $|\mathbb{F}|^n$

イロト イポト イヨト イヨト

- A code $\mathcal{C} \subseteq \mathbb{F}^n$
- A codeword $c = (c_1, \ldots, c_n) \in \mathcal{C}$ such that all $c_1, \ldots, c_n \in \mathbb{F}$
- Block length is n
- Weight of a codeword: $wt(c) = |\{i: c_i \neq 0\}|$
- (Hamming) Distance $d_H(c, c') = wt(c c')$
- Distance of a code: $d(\mathcal{C}) = \min_{\substack{c,c' \in \mathcal{C} \\ c \neq c'}} \operatorname{wt}(c c')$
- (N, K, d)-code: $|\mathcal{C}| = K$, $|\mathbb{F}|^n = N$ and $d(\mathcal{C}) = d$

- Given fixed $\mathbb F$ and n
- We want to maximize $|\mathcal{C}|$ and $d(\mathcal{C})$
 - $\bullet \ |\mathcal{C}|$ determines how much information can be transmitted over the channel, and
 - d(C) determines the robustness of the encoding (because, to force the maximum likelihood decoding algorithm to output an incorrect codeword, the channel needs to introduce at least $\lceil d(C)/2 \rceil$ errors)
- We will see later that these two parameters are conflicting and there is a trade-off of these two parameters

Linear Codes

- Linear Code: If $\mathcal C$ is a vector subspace of $\mathbb F^n$
- Suppose (c_1, \ldots, c_k) is a basis of the vector subspace $\mathcal C$
- [n, k, d]_𝔅 code: A code C that is a vector subspace of 𝔅ⁿ, of dimension k, and d(C) = d
- The generator matrix G of a code C is defined to a matrix in $\mathbb{F}^{k \times n}$ as defined below.

$$G = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{pmatrix}$$

• Note that $\begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_k \end{pmatrix} \cdot G$ generates all codewords in C, where $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・

Distance of a Linear Code

Claim

$$d(\mathcal{C}) = \min_{c \in \mathcal{C}} \operatorname{wt}(c)$$

Proof.

- Let *d*(*C*) is realized by the distance between the codewords *c* and *c*'
- Note that c c' is also a codeword (because $\mathcal C$ is a vector space)
- Note that $wt(c c') = d(\mathcal{C})$
- If there exists \tilde{c} such that wt $(\tilde{c}) < d(\mathcal{C})$ then $d_H(0, \tilde{c}) < d(\mathcal{C})$ (which is a contradiction)
- Therefore, we have the claim

3.5

• The repetition code $\{0^n, 1^n\}$ has generator matrix

$$\left(\overbrace{1 \quad 1 \quad \cdots \quad 1}^{n\text{-times}}\right)$$

• It is an $[n, 1, n]_2$ code

・ロト ・四ト ・ヨト ・ヨト

- Let G be the generator matrix of a code C
- Let G' be the generator matrix obtained by replacing the row $G_{i,*}$ in the matrix G by the row $\alpha G_{i,*}$, for $\alpha \in \mathbb{F}^*$, then G' generates the same code as G
- Let G' be the generator matrix obtained by replacing the row $G_{i,*}$ in the matrix G by $G_{i,*} + \alpha G_{j,*}$, for $i \neq j$ and $\alpha \in \mathbb{F}^*$, then G' generates the same code as G
- We write $G \equiv G'$

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Suppose G' is a generator matrix obtained by swapping two columns of the generator matrix G
- Then the code generated by G' is similar to the code generated by G
- We write $G \sim G'$
- If G is the generator matrix of an [n, k, d]_𝔅 code, then G' also generates an [n, k, d]_𝔅 code (the codewords can be bijectively mapped where the mapping swaps the *i*-th and the *j*-th coordinate of the codeword)

・ロト ・四ト ・ヨト ・ヨト

- Let G be a generator matrix of an $[n, k, d]_{\mathbb{F}}$ code
- Then there exists $P \in \mathbb{F}^{k \times (n-k)}$ such that

$$G \sim \left[\left. I_{k \times k} \right| P \right],$$

where $I_{k \times k}$ is the identity matrix of dimension $k \times k$

 Proof Outline: Row rank = Column rank, swap k independent columns of G into its first k columns, and perform Gaussian Elimination

・ロト ・ 一日 ・ ・ 日 ・ ・ ・ ・ ・

Dual Code

• Define the matrix H in $\mathbb{F}^{(n-k)\times n}$ as follows

$$H = \left[-P^{\top} \right| I_{(n-k)\times(n-k)} \right]$$

Claim

The inner product of any row $G_{i,*}$ and any row $H_{j,*}$ is always 0.

Proof.

• Note that
$$G_{i,*} = (\delta_i, P_{i,*})$$

• Note that
$$H_{i,*} = \left(-P_{*,j}^{\top}, \delta_j\right)$$

• Their inner product is
$$-P_{i,j} + P_{i,j} = 0$$

Linear Codes

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Claim

Every codeword in the code generated by G is orthogonal to every codeword in the code generated by H $\,$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof.

- A codeword in the code generated by G looks like $\sum_{i=1}^{k} \alpha_i \cdot G_{i,*}$, for $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$
- A codeword in the code generated by H looks like $\sum_{j=1}^{n-k} \beta_j \cdot H_{j,*}$, for $\beta_1, \ldots, \beta_{n-k} \in \mathbb{F}$
- Now, we have

$$\left\langle \sum_{i=1}^{k} \alpha_{i} G_{i,*}, \sum_{j=1}^{n-k} \beta_{j} H_{j,*} \right\rangle = \sum_{i=1}^{k} \sum_{j=1}^{n-k} \alpha_{i} \beta_{j} \langle G_{i,*}, H_{j,*} \rangle$$
$$= \sum_{i=1}^{k} \sum_{j=1}^{n-k} \alpha_{i} \beta_{j} \cdot 0 = 0 \qquad \Box$$

・ロト ・ 御 ト ・ 注 ト ・ 注 ト

Dual Code

- $\bullet\,$ Let ${\mathcal C}$ be the code generated by ${\mathcal G}$
- We denote the code generated by H as \mathcal{C}^{\perp} (dual of \mathcal{C})

• Show that
$$\left(\mathcal{C}^{\perp}\right)^{\perp}=\mathcal{C}$$

- We represent the $d(\mathcal{C}^{\perp})$ by d^{\perp}
- Let t(H) represent the minimum number of columns of H that can be (non-trivially) linearly combined to yield the 0 column

Claim

$$d(\mathcal{C})=t(H)$$

Proof is left as an exercise

- 4 同 2 4 日 2 4 日 2

- The columns of the generator matrix G has all binary strings of length r
- For example, for r = 3, we have

$$G = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

• This generates a $[2^r, r, 2^{r-1}]_2$ code (Prove this)

< ロ > < 同 > < 回 > < 回 > < 回 > <

- From the generator matrix of the Hadamard Code, we remove all those columns that have a 0 as their top-most entry
- For example, for r = 3, we have

$$G = egin{pmatrix} 1 & 1 & 1 & 1 \ 0 & 0 & 1 & 1 \ 0 & 1 & 0 & 1 \end{pmatrix}$$

• This generates a $[2^{r-1}, r, 2^{r-2}]_2$ code (Prove this)

< ロ > < 同 > < 回 > < 回 > < 回 > <

- From the generator matrix of the Hadamard Code, we remove the all-0 column
- For example, for r = 3, we have

$$G=egin{pmatrix} 0&0&0&1&1&1&1\ 0&1&1&0&0&1&1\ 1&0&1&0&1&0&1 \end{pmatrix}$$

• This generates a $[2^r - 1, r, 2^{r-1}]_2$ code (Prove this)

Claim

Let G be the generator matrix of the Simplex Code. We have t(G) = 3.

Prove this.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Hamming Code is the dual of the Simplex code
- Therefore, it is a $[2^r 1, 2^r r 1, 3]_2$ code (Prove this)
- Write down the generator matrix for r = 3 case

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・