Lecture 14: Linear Codes: Examples and Properties

- Given a field $(\mathbb{F},+, \cdot)$
- We consider the set of all n-tuples with entries in \mathbb{F}
- That is, we will consider the set \mathbb{F}^{n}
- The total number of elements in the set if $|\mathbb{F}|^{n}$

Basic Terminology

- A code $\mathcal{C} \subseteq \mathbb{F}^{n}$
- A codeword $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathcal{C}$ such that all $c_{1}, \ldots, c_{n} \in \mathbb{F}$
- Block length is n
- Weight of a codeword: $\mathrm{wt}(c)=\left|\left\{i: c_{i} \neq 0\right\}\right|$
- (Hamming) Distance $d_{H}\left(c, c^{\prime}\right)=w t\left(c-c^{\prime}\right)$
- Distance of a code: $d(\mathcal{C})=\min _{c, c^{\prime} \in \mathcal{C}} \mathrm{wt}\left(c-c^{\prime}\right)$ $c \neq c^{\prime}$
- (N, K, d)-code: $|\mathcal{C}|=K,|\mathbb{F}|^{n}=N$ and $d(\mathcal{C})=d$
- Given fixed \mathbb{F} and n
- We want to maximize $|\mathcal{C}|$ and $d(\mathcal{C})$
- $|\mathcal{C}|$ determines how much information can be transmitted over the channel, and
- $d(\mathcal{C})$ determines the robustness of the encoding (because, to force the maximum likelihood decoding algorithm to output an incorrect codeword, the channel needs to introduce at least $\lceil d(\mathcal{C}) / 2\rceil$ errors)
- We will see later that these two parameters are conflicting and there is a trade-off of these two parameters
- Linear Code: If \mathcal{C} is a vector subspace of \mathbb{F}^{n}
- Suppose $\left(c_{1}, \ldots, c_{k}\right)$ is a basis of the vector subspace \mathcal{C}
- $[n, k, d]_{\mathbb{F}}$ code: A code \mathcal{C} that is a vector subspace of \mathbb{F}^{n}, of dimension k, and $d(\mathcal{C})=d$
- The generator matrix G of a code \mathcal{C} is defined to a matrix in $\mathbb{F}^{k \times n}$ as defined below.

$$
G=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{k}
\end{array}\right)
$$

- Note that $\left(\begin{array}{llll}\alpha_{1} & \alpha_{2} & \cdots & \alpha_{k}\end{array}\right) \cdot G$ generates all codewords in \mathcal{C}, where $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{F}$

Distance of a Linear Code

Claim

$$
d(\mathcal{C})=\min _{c \in \mathcal{C}} w t(c)
$$

Proof.

- Let $d(\mathcal{C})$ is realized by the distance between the codewords c and c^{\prime}
- Note that $c-c^{\prime}$ is also a codeword (because \mathcal{C} is a vector space)
- Note that $w t\left(c-c^{\prime}\right)=d(\mathcal{C})$
- If there exists \widetilde{c} such that $\operatorname{wt}(\widetilde{c})<d(\mathcal{C})$ then $d_{H}(0, \widetilde{c})<d(\mathcal{C})$ (which is a contradiction)
- Therefore, we have the claim

Example:Repetition code

- The repetition code $\left\{0^{n}, 1^{n}\right\}$ has generator matrix

$$
(\overbrace{1}^{1} \begin{array}{llll}
n \text {-times } & \cdots & 1 \\
& & &
\end{array})
$$

- It is an $[n, 1, n]_{2}$ code

Equivalent Code

- Let G be the generator matrix of a code \mathcal{C}
- Let G^{\prime} be the generator matrix obtained by replacing the row $G_{i, *}$ in the matrix G by the row $\alpha G_{i, *}$, for $\alpha \in \mathbb{F}^{*}$, then G^{\prime} generates the same code as G
- Let G^{\prime} be the generator matrix obtained by replacing the row $G_{i, *}$ in the matrix G by $G_{i, *}+\alpha G_{j, *}$, for $i \neq j$ and $\alpha \in \mathbb{F}^{*}$, then G^{\prime} generates the same code as G
- We write $G \equiv G^{\prime}$
- Suppose G^{\prime} is a generator matrix obtained by swapping two columns of the generator matrix G
- Then the code generated by G^{\prime} is similar to the code generated by G
- We write $G \sim G^{\prime}$
- If G is the generator matrix of an $[n, k, d]_{\mathbb{F}}$ code, then G^{\prime} also generates an $[n, k, d]_{\mathbb{F}}$ code (the codewords can be bijectively mapped where the mapping swaps the i-th and the j-th coordinate of the codeword)
- Let G be a generator matrix of an $[n, k, d]_{\mathbb{F}}$ code
- Then there exists $P \in \mathbb{F}^{k \times(n-k)}$ such that

$$
G \sim\left[I_{k \times k} \mid P\right],
$$

where $I_{k \times k}$ is the identity matrix of dimension $k \times k$

- Proof Outline: Row rank = Column rank, swap k independent columns of G into its first k columns, and perform Gaussian Elimination
- Define the matrix H in $\mathbb{F}^{(n-k) \times n}$ as follows

$$
H=\left[-P^{\top} \mid I_{(n-k) \times(n-k)}\right]
$$

Claim

The inner product of any row $G_{i, *}$ and any row $H_{j, *}$ is always 0 .

Proof.

- Note that $G_{i, *}=\left(\delta_{i}, P_{i, *}\right)$
- Note that $H_{i, *}=\left(-P_{*, j}^{\top}, \delta_{j}\right)$
- Their inner product is $-P_{i, j}+P_{i, j}=0$

Claim

Every codeword in the code generated by G is orthogonal to every codeword in the code generated by H

Proof.

- A codeword in the code generated by G looks like $\sum_{i=1}^{k} \alpha_{i} \cdot G_{i, *}$, for $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{F}$
- A codeword in the code generated by H looks like $\sum_{j=1}^{n-k} \beta_{j} \cdot H_{j, *}$, for $\beta_{1}, \ldots, \beta_{n-k} \in \mathbb{F}$
- Now, we have

$$
\begin{align*}
\left\langle\sum_{i=1}^{k} \alpha_{i} G_{i, *}, \sum_{j=1}^{n-k} \beta_{j} H_{j, *}\right\rangle & =\sum_{i=1}^{k} \sum_{j=1}^{n-k} \alpha_{i} \beta_{j}\left\langle G_{i, *}, H_{j, *}\right\rangle \\
& =\sum_{i=1}^{k} \sum_{j=1}^{n-k} \alpha_{i} \beta_{j} \cdot 0=0
\end{align*}
$$

- Let \mathcal{C} be the code generated by G
- We denote the code generated by H as \mathcal{C}^{\perp} (dual of \mathcal{C})
- Show that $\left(\mathcal{C}^{\perp}\right)^{\perp}=\mathcal{C}$
- We represent the $d\left(\mathcal{C}^{\perp}\right)$ by d^{\perp}
- Let $t(H)$ represent the minimum number of columns of H that can be (non-trivially) linearly combined to yield the 0 column

Claim

$$
d(\mathcal{C})=t(H)
$$

Proof is left as an exercise

Hadamard Code

- The columns of the generator matrix G has all binary strings of length r
- For example, for $r=3$, we have

$$
G=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

- This generates a $\left[2^{r}, r, 2^{r-1}\right]_{2}$ code (Prove this)
- From the generator matrix of the Hadamard Code, we remove all those columns that have a 0 as their top-most entry
- For example, for $r=3$, we have

$$
G=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

- This generates a $\left[2^{r-1}, r, 2^{r-2}\right]_{2}$ code (Prove this)
- From the generator matrix of the Hadamard Code, we remove the all-0 column
- For example, for $r=3$, we have

$$
G=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

- This generates a $\left[2^{r}-1, r, 2^{r-1}\right]_{2}$ code (Prove this)

Claim

Let G be the generator matrix of the Simplex Code. We have $t(G)=3$.

Prove this.

Hamming Code

- Hamming Code is the dual of the Simplex code
- Therefore, it is a $\left[2^{r}-1,2^{r}-r-1,3\right]_{2}$ code (Prove this)
- Write down the generator matrix for $r=3$ case

