
Lecture 13: Reed-Solomon Codes with an Example
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The Field GF[2]

Let (F,+, ·) be a field such that |F| = 2
Let F = {0, 1}
We define a+ b := (a+ b) mod 2
We define a · b := (a · b) mod 2
Note that −a = a, for a ∈ F
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The Field GF[8] I

Let (F,+, ·) be a field such that |F| = 8

Let F be the set of all polynomials in X that have coefficients
in GF[2] with degree < 3

Concretely,
F = {0, 1,X ,X + 1,X 2,X 2 + 1,X 2 + X ,X 2 + X + 1}
We can represent these elements as numbers with 3-bit binary
representation, i.e. {0, 1, 2, . . . , 7}
For f (X ), g(X ) ∈ F, we define
f (X ) + g(X ) := (f0 + g0) + (f1 + g1)X + (f2 + g2)X

2

For f (X ),G (X ) ∈ F, we define
f (X ) + g(X ) := ( f (X ) · g(X ) ) mod (X 3 + X + 1)
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The Field GF[8] II

For example, (X 2 + 1) · (X + 1) = X 3 + X 2 + X + 1 = X 2

mod X 3 + X + 1

And (X + 1)−1 = (X 2 + X )

Henceforth, we will write the elements as {0, 1, 2, . . . , 7}
So, in this representation, the above two statements
correspond to 5 · 3 = 4 and 3−1 = 6
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Reed-Solomon Codes I

Let F4,8 be the set of all polynomials with degree < 4 and
each coefficient of the polynomial is in GF[8]
That is, {F0 + F1Z + F2Z

2 + F3Z
3 : F0,F1,F2,F3 ∈ GF[8]}

The set of all messagesM corresponds to{
(F0,F1,F2,F3) : F0,F1,F2,F3 ∈ GF[8]

}
So, the size of the message space is |M| =

∣∣GF[8]
∣∣4 = 84

The encoding of the message (F0,F1,F2,F3) is the evaluation
of the function F (Z ) =

∑k=3
k=0 FkZ

k at every Z ∈ GF[8]
That is, we output (

F (0),F (1), . . . ,F (7)
)

Note that the code is 8 elements in GF[8] and each element in
GF[8] is represented by 3-bits. So, the codeword is represented
by 8 · 3 = 24 bits
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Reed-Solomon Codes II

So, the encoding function
Enc : (F0,F1,F2,F3) 7→ (F (0),F (1),F (2), . . . ,F (7))

In other words, it takes 12-bit input and provides 24-bit output
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Reed-Solomon Codes III

Claim
The following set is a vector space

{Enc(F ) : F ∈M}

Let F ,G be two polynomials inM. Interpret (F (0), . . . ,F (7))
and (G (0), . . . ,G (7)) as vectors. Their sum is identical to
(H(0), . . . ,H(7)), where H = F + G .

Let α ∈ GF[8]. Note that α · (F (0), . . . ,F (7)) is the vector
(H(0), . . . ,H(7)), where H = αF .
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Reed-Solomon Codes IV
Now, we can claim that every Enc(F ) can be written as a
linear combination of 4 basis vectors. For example, if
F = F0 · (1) + F1 · (Z ) + F2 · (Z 2) + F3 · (Z 3), then we have
Enc(F ) = F0 ·Enc(1)+F1 ·Enc(Z )+F2 ·Enc(Z 2)+F3 ·Enc(Z 3)

Note that Enc(Z i ) = (0i , 1i , 2i , . . . , 7i )
So, we can conclude that Enc(F ) can be computed by the
following matrix multiplication

(
F0 F1 F2 F3

)
·


00 10 20 . . . 70

01 11 21 . . . 71

02 12 22 . . . 72

03 13 23 . . . 73


The matrix G =

(
00 10 20 ... 70

01 11 21 ... 71

02 12 22 ... 72

03 13 23 ... 73

)
is the generator matrix of

the code
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Reed-Solomon Codes V

Claim
If F is not the 0 message, then Enc(F ) can have at most 3 zeros.

Because F is a non-zero polynomial of degree (at most) 3, it can
have at most 3 zeros.
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Reed-Solomon Codes VI

Claim
For two distinct polynomials F and G , the Enc(F ) and Enc(G ) can
match at at most 3 places

Note that Enc(F − G ) = Enc(F )− Enc(G ), and Enc(F − G ) can
have at most 3 zeros
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Reed-Solomon Codes VII

Claim
Given 4 evaluations of the polynomial F at distinct points, we can
uniquely recover the polynomial F

Using Lagrange Interpolation
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Reed-Solomon Codes VIII

Think: Generalize this discussion to polynomials of degree < d with
coefficients in a field F. The encoding evaluates the polynomial at
all elements of F.

How long are the messages?

How long are the codewords?

What is the generator matrix?

How many positions can two different codewords have
identical entries?
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