
Lecture 12: Error-correcting Codes: Motivation
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Outline

Today we will see the main underlying problem that motivates
error-correcting codes.
Then, we will introduce the basics of Fields, and
Finally, we will introduce Reed-Solomon Codes.
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Setting

The sender wants to send an n-bit message m to the receiver
But the communication channel they are using is not reliable
The channel flips every bit transmitted over it independently
with probability ε
If the sender transmits the message m as is over the channel,
note that if any bit gets flipped, the receiver will not receive
the correct message
So, the probability that all bits are correctly transmitted is
(1− ε)n, which is exponentially low
How can the sender reliably communicate to the receiver?
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Problem Formulation

The sender has a message m

The sender uses an encoding algorithm Enc(·) to compute the
encoding of the message m, i.e., c = Enc(m)

The message c is transmitted over the channel and the
receiver receives the (possibly) altered message c̃

The receiver applies a decoding algorithm Dec(·) on c̃ to
recover the message, i.e., m̃ = Dec(c̃)

We want to ensure that the probability of correctly recovering
the message is at least, say, 0.99
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First Encoding Scheme: Repetition Code

Suppose m ∈ {0, 1}
Suppose Enc(m) = mmm

Suppose Dec(m̃1, m̃2, m̃3) = maj(m̃1, m̃2, m̃3)

Note that the probability that the message is correctly recovered is:(
3
0

)
(1− ε)3 +

(
3
1

)
ε(1− ε)2

In this case, the encoding function repeated the input message 3
times.
Think: Given ε and the probability of successful transmission 0.99,
how many times should the encoding function repeat the message?
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Decoding Algorithm: Maximum Likelihood Decoding

Suppose the receiver receives the erroneous string c̃ from the
channel
What message should it decode to?
The best decoding algorithm (ignoring efficiency of the
decoding algorithm) is the Maximum Likelihood Decoding

Let M be the set of all messages
Suppose the message m is encoded as Enc(m) by the encoding
function
We can compute the probability p(c̃ |Enc(m)), i.e. the
probability that the channel input c = Enc(m) was altered into
the received string c̃
Output m ∈M such that p(c̃ |Enc(m)) is maximum

For specific codes, there are algorithms that are more efficient
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Quality of the Channel

Note that when ε = 1/2, there is no way to reliably transmit a
message, because all messages are equally likely conditioned on
the received string c̃

Note that when ε = 0, it is trivial to transmit messages reliably
As ε increases from 0 to 1/2, we expect the task of
transmitting message to get “increasingly difficult.”
Alternately, their reliability continues to decrease
When ε > 1/2 the starts to get more “reliable!” Note that
ε = δ and ε = 1− δ are (roughly) “identical channels” and,
intuitively, their qualities are identical
When ε = 1, it is again trivial to transmit messages over the
channel
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Abstract Algebra: Fields

A field (F,+, ·) is a set of elements F endowed with two operations
+ (addition) and · (multiplication) that satisfies the following
conditions

Closure: For all a, b ∈ F, we have a + b ∈ F and a · b ∈ F
Commutativity: For all a, b ∈ F, we have a + b = b + a and
a · b = b · a
Associativity: For all a, b, c ∈ F, we have
(a + b) + c = a + (b + c) and (a · b) · c = a · (b · c)

Identities: There exists unique elements 0, 1 ∈ F such that, for
all a ∈ F, we have a + 0 = a and a · 1 = a

Inverses: For every a ∈ F, there exists a unique element
(−a) ∈ F such that a + (−a) = 0, and for every a ∈ F, if
a 6= 0, there exists a unique element a−1 ∈ F such that
a · a−1 = 1
Distributivity: For every a, b, c ∈ F, we have
a · (b + c) = a · b + a · c
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Example: Infinite Fields

Let Q be the set of all rationals. Then (Q,+, ·) is a field,
where the operations are defined as follows

a
b + c

d = ad+bc
bd , and

a
b ·

c
d = ac

bd .

Note that (Z,+, ·) is not a field, where Z is the set of all
integers
Note that (C,+, ·) is a field, where C is the set of all complex
numbers
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Example: Finite Fields

Let Zp, represent the set of all integers {0, . . . , p − 1}. For
prime p, (Zp,+, ·) is a finite field where we define

a + b = (a + b) mod p (i.e., integer addition mod p), and
a · b = (ab) mod p (i.e., integer multiplication mod p).

The only non-triviality is to argue that every a ∈ Zp such that
a 6= 0 has a unique inverse. The proof is left as an exercise.
Hint: Show that ap−2 is the inverse of a.
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Example: Another Finite Field I

Let n = pα, where p is a prime and α is a positive integer

Let F be the set of all polynomials in X of degree < α such
that the coefficients of each term in the polynomial is in Zp

So, the tuple (a0, . . . , aα−1) ∈ Zα
p can be equivalently

interpreted as the polynomial
∑α−1

i=0 aiX
i

So, elements of F can be interpreted either as the tuple
(a0, . . . , aα−1) or the polynomial

∑α−1
i=0 aiX

i

The sum of two polynomial is defined as follows:

(a0, . . . , aα−1) + (b0, . . . , bα−1) := (a0 + b0, . . . , aα−1 + bα−1)
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Example: Another Finite Field II

Let Π(X ) be a monic polynomial with degree α and
coefficients in Zp. Suppose Π(X ) does not have any roots in
Zp

The product of two polynomials (a0, . . . , aα−1) and
(b0, . . . , bα−1) is given by the polynomialα−1∑

i=0

aiX
i

 ·
α−1∑

i=0

biX
i

 mod Π(X )

Think: What is the unique inverse of the polynomial
represented by (a0, . . . , aα−1)?
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Example: Another Finite Field III

Suppose we want to define a field of size 8 = 23

We have p = 2 and α = 3

So, F is the following set{
0, 1,X ,X + 1,X 2,X 2 + 1,X 2 + X ,X 2 + X + 1

}
We use the irreducible polynomial Π(X ) = X 3 + X + 1

Sum of two polynomial is defined naturally

Product of two polynomials is defined by multiplying them and
then taking mod Π(X )

What are the inverses of each element in F
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Reed-Solomon Code over a field (F,+, ·) I

Suppose the message is (m0, . . . ,mk−1) ∈ Fk

Consider the polynomial M(Z ) =
∑k−1

i=0 Z i

Let F = {e0, e1, . . . , e|F|−1}
The encoding of (m0, . . . ,mk−1) is defined to be(

M(e0),M(e1), . . . ,M(e|F|−1)
)

Think: “Sum of two different codewords” is the codeword
corresponding to the “sum of the two corresponding messages”
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Reed-Solomon Code over a field (F,+, ·) II

Think: Two different codewords have Hamming distance at
least |F| − (k − 1). If the Hamming distance is 6 |F| − k , then
the difference of the codewords has > k zeros. But a degree
(k − 1) polynomial can have at most (k − 1) zeros, unless it is
the zero-polynomial. So, the difference of the two codewords
is the evaluation of the zero-polynomial at the field elements.
This implies that the corresponding messages were identical.
Hence contradiction.
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