Lecture 12: Error-correcting Codes: Motivation

Error-correcting Codes

・日・ ・ヨ・ ・

- Today we will see the main underlying problem that motivates error-correcting codes.
- Then, we will introduce the basics of Fields, and
- Finally, we will introduce Reed-Solomon Codes.

Setting

- The sender wants to send an *n*-bit message *m* to the receiver
- But the communication channel they are using is not reliable
- $\bullet\,$ The channel flips every bit transmitted over it independently with probability $\varepsilon\,$
- If the sender transmits the message *m* as is over the channel, note that if any bit gets flipped, the receiver will not receive the correct message
- So, the probability that all bits are correctly transmitted is $(1-\varepsilon)^n$, which is exponentially low
- How can the sender reliably communicate to the receiver?

< 同 > < 三 > < 三 >

- The sender has a message *m*
- The sender uses an encoding algorithm $Enc(\cdot)$ to compute the encoding of the message *m*, i.e., c = Enc(m)
- The message c is transmitted over the channel and the receiver receives the (possibly) altered message \tilde{c}
- The receiver applies a decoding algorithm $Dec(\cdot)$ on \tilde{c} to recover the message, i.e., $\tilde{m} = Dec(\tilde{c})$
- We want to ensure that the probability of correctly recovering the message is at least, say, 0.99

First Encoding Scheme: Repetition Code

- Suppose $m \in \{0, 1\}$
- Suppose Enc(*m*) = *mmm*
- Suppose $\mathsf{Dec}(\widetilde{m}_1, \widetilde{m}_2, \widetilde{m}_3) = \mathsf{maj}(\widetilde{m}_1, \widetilde{m}_2, \widetilde{m}_3)$

Note that the probability that the message is correctly recovered is:

$$\binom{3}{0}(1-arepsilon)^3+\binom{3}{1}arepsilon(1-arepsilon)^2$$

In this case, the encoding function repeated the input message 3 times.

Think: Given ε and the probability of successful transmission 0.99, how many times should the encoding function repeat the message?

Decoding Algorithm: Maximum Likelihood Decoding

- Suppose the receiver receives the erroneous string \widetilde{c} from the channel
- What message should it decode to?
- The best decoding algorithm (ignoring efficiency of the decoding algorithm) is the Maximum Likelihood Decoding
 - $\bullet~$ Let ${\mathcal M}$ be the set of all messages
 - Suppose the message *m* is encoded as Enc(m) by the encoding function
 - We can compute the probability p(č|Enc(m)), i.e. the probability that the channel input c = Enc(m) was altered into the received string č
 - Output $m \in \mathcal{M}$ such that $p(\widetilde{c}|\mathsf{Enc}(m))$ is maximum
- For specific codes, there are algorithms that are more efficient

Quality of the Channel

- Note that when $\varepsilon = 1/2$, there is no way to reliably transmit a message, because all messages are equally likely conditioned on the received string \tilde{c}
- Note that when $\varepsilon = 0$, it is trivial to transmit messages reliably
- As ε increases from 0 to 1/2, we expect the task of transmitting message to get "increasingly difficult." Alternately, their reliability continues to decrease
- When $\varepsilon > 1/2$ the starts to get more "reliable!" Note that $\varepsilon = \delta$ and $\varepsilon = 1 \delta$ are (roughly) "identical channels" and, intuitively, their qualities are identical
- When $\varepsilon=$ 1, it is again trivial to transmit messages over the channel

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

Abstract Algebra: Fields

A field $(\mathbb{F}, +, \cdot)$ is a set of elements \mathbb{F} endowed with two operations + (addition) and \cdot (multiplication) that satisfies the following conditions

- Closure: For all $a, b \in \mathbb{F}$, we have $a + b \in \mathbb{F}$ and $a \cdot b \in \mathbb{F}$
- Commutativity: For all $a, b \in \mathbb{F}$, we have a + b = b + a and $a \cdot b = b \cdot a$
- Associativity: For all $a, b, c \in \mathbb{F}$, we have (a+b)+c = a+(b+c) and $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Identities: There exists unique elements $0, 1 \in \mathbb{F}$ such that, for all $a \in \mathbb{F}$, we have a + 0 = a and $a \cdot 1 = a$
- Inverses: For every $a \in \mathbb{F}$, there exists a unique element $(-a) \in \mathbb{F}$ such that a + (-a) = 0, and for every $a \in \mathbb{F}$, if $a \neq 0$, there exists a unique element $a^{-1} \in \mathbb{F}$ such that $a \cdot a^{-1} = 1$
- Distributivity: For every $a, b, c \in \mathbb{F}$, we have $a \cdot (b + c) = a \cdot b + a \cdot c$

э

• Let $\mathbb Q$ be the set of all rationals. Then $(\mathbb Q,+,\cdot)$ is a field, where the operations are defined as follows

•
$$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$$
, and
• $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$.

- Note that $(\mathbb{Z},+,\cdot)$ is not a field, where \mathbb{Z} is the set of all integers
- Note that $(\mathbb{C},+,\cdot)$ is a field, where \mathbb{C} is the set of all complex numbers

- Let \mathbb{Z}_p , represent the set of all integers $\{0, \ldots, p-1\}$. For prime p, $(\mathbb{Z}_p, +, \cdot)$ is a finite field where we define
 - $a + b = (a + b) \mod p$ (i.e., integer addition mod p), and
 - $a \cdot b = (ab) \mod p$ (i.e., integer multiplication mod p).
- The only non-triviality is to argue that every $a \in \mathbb{Z}_p$ such that $a \neq 0$ has a unique inverse. The proof is left as an exercise. Hint: Show that a^{p-2} is the inverse of a.

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

- Let $n = p^{\alpha}$, where p is a prime and α is a positive integer
- Let F be the set of all polynomials in X of degree < α such that the coefficients of each term in the polynomial is in Z_p
- So, the tuple (a₀,..., a_{α-1}) ∈ Z^α_p can be equivalently interpreted as the polynomial ∑^{α-1}_{i=0} a_iXⁱ
- So, elements of \mathbb{F} can be interpreted either as the tuple $(a_0, \ldots, a_{\alpha-1})$ or the polynomial $\sum_{i=0}^{\alpha-1} a_i X^i$
- The sum of two polynomial is defined as follows:

$$(a_0,\ldots,a_{\alpha-1})+(b_0,\ldots,b_{\alpha-1}) := (a_0+b_0,\ldots,a_{\alpha-1}+b_{\alpha-1})$$

Error-correcting Codes

- 4 同 2 - 4 回 2 - 4 回 2 - 4

- Let Π(X) be a monic polynomial with degree α and coefficients in Z_p. Suppose Π(X) does not have any roots in Z_p
- The product of two polynomials $(a_0, \ldots, a_{\alpha-1})$ and $(b_0, \ldots, b_{\alpha-1})$ is given by the polynomial

$$\left(\sum_{i=0}^{\alpha-1} a_i X^i\right) \cdot \left(\sum_{i=0}^{\alpha-1} b_i X^i\right) \mod \Pi(X)$$

 Think: What is the unique inverse of the polynomial represented by (a₀,..., a_{α-1})?

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

- Suppose we want to define a field of size $8 = 2^3$
- We have p = 2 and $\alpha = 3$
- $\bullet\,$ So, $\mathbb F$ is the following set

$$\left\{0, 1, X, X+1, X^2, X^2+1, X^2+X, X^2+X+1\right\}$$

- We use the irreducible polynomial $\Pi(X) = X^3 + X + 1$
- Sum of two polynomial is defined naturally
- Product of two polynomials is defined by multiplying them and then taking mod Π(X)
- $\bullet\,$ What are the inverses of each element in ${\mathbb F}\,$

- Suppose the message is $(m_0,\ldots,m_{k-1})\in\mathbb{F}^k$
- Consider the polynomial $M(Z) = \sum_{i=0}^{k-1} Z^i$

• Let
$$\mathbb{F} = \{e_0, e_1, \dots, e_{\mathbb{F}|-1}\}$$

• The encoding of (m_0, \ldots, m_{k-1}) is defined to be

$$\left(M(e_0), M(e_1), \ldots, M(e_{\mathbb{F}|-1})\right)$$

• Think: "Sum of two different codewords" is the codeword corresponding to the "sum of the two corresponding messages"

- Think: Two different codewords have Hamming distance at least |F| (k 1). If the Hamming distance is ≤ |F| k, then the difference of the codewords has ≥ k zeros. But a degree (k 1) polynomial can have at most (k 1) zeros, unless it is the zero-polynomial. So, the difference of the two codewords is the evaluation of the zero-polynomial at the field elements.
 - This implies that the corresponding messages were identical. Hence contradiction.