Lecture 10: Lovász Local Lemma
Let A_1, \ldots, A_n be indicator variables for bad events in an experiment.

Suppose $P[A_i] \leq p$

We want to avoid all the bad events.

If $P[\neg A_1 \land \cdots \land \neg A_n] > 0$, then there exists a way to avoid all the bad events simultaneously.

Suppose, the event A_i is independent of all other events.

Then, it is easy to see that:

$$P[\neg A_1 \land \cdots \land \neg A_n] \geq (1 - p)^n > 0$$

Lovász Local Lemma will help us conclude the same even in presence of “limited independence”
The Statement

Theorem (Lovász Local Lemma)

Let \((A_1, \ldots, A_n) \) be a set of bad event. For each \(A_i \), where \(i \in [n] \), we have \(P[A_i] \leq p \) and each event \(A_i \) depends on at most \(d \) other bad events. If \(ep(d + 1) \leq 1 \), then

\[
P[\neg A_1 \land \cdots \land \neg A_n] \geq \left(1 - \frac{1}{d + 1}\right)^n > 0
\]

The condition is also stated sometimes as \(4pd \leq 1 \), instead of \(ep(d + 1) \leq 1 \).
Application: k-SAT

- Let Φ be a k-SAT formula such that each variable occurs in at most $2^{k-2}/k$ different clauses.
- Experiment: X_i be an independent uniform random variable that assigns the variable x_i a value from \{true, false\}.
- Bad Event: For the j-th clause we have the bad event A_j that is the indicator variable for the bad event: The j-th clause is not satisfied.
- Probability of Bad Event: For any j, note that
 \[\mathbb{P}[A_j] \leq \frac{1}{2^k}, \]
 because there is at most one assignment of variables to make the clause false.
Application: \(k \)-SAT

- **Dependence:** Note that the \(j \)-th clause has \(k \) literals, and each variable of the literal occurs in \(2^{k-2}/k \) different clauses. So, the clause \(A_j \) can depend on at most \(d = 2^{k-2} \) different bad events.

- **Conclusion:** Note that \(4pd = 1 \), so Lovász Local Lemma implies that there exists an assignment that satisfies all the clauses in the formula simultaneously.

- **Observation:** The probability \(p \) of each bad event does not depend on the overall problem instance size (i.e., the number of variables).
Application: Vertex Coloring

- Let G be a graph with degree at most Δ

- Experiment: X_v be the random variable that represents the color of the vertex v. Let X_v be an independent and uniformly random over the set $\{1, \ldots, C\}$

- Bad Event: For every edge e, we have a bad event A_e that is the indicator variable for both its vertices receiving identical color

- Probability of the Bad Event: Note that $\mathbb{P}[A_e] = \frac{1}{C}$

- Dependence: Note that the event A_e does not depend on any other event $A_{e'}$ if the edges do not share a vertex. So, the event A_e depends on at most $2(\Delta - 1)$ other bad events

- Conclusion: A valid coloring exists if $4pd \leq 1$, i.e., $C \geq 8(\Delta - 1)$
Application: Vertex Coloring (Bad Bound)

- Let G be a graph with degree at most Δ
- Experiment: X_v be the random variable that represents the color of the vertex v. Let X_v be an independent and uniformly random over the set $\{1, \ldots, C\}$
- Bad Event: For every edge v, we have a bad event A_v that is the indicator variable for one of the neighbors of v receiving the same color as v
- Probability of the Bad Event: Note that $\Pr[A_v] \leq 1 - \left(1 - \frac{1}{C}\right)^\Delta$
- Dependence: Note that the event A_v does not depend on any other event $A_{v'}$ if $\{v\} \cup N(v)$ does not intersect with $\{v'\} \cup N(v')$. So, the event A_e depends on at most $\Delta + \Delta(\Delta - 1) = \Delta^2$ other bad events
- Conclusion: A valid coloring exists if $4pd \leq 1$, i.e., $C \geq ???$
Claim

Let $S \subseteq \{1, \ldots, n\}$, then we have:

$$
P \left[A_i \mid \bigwedge_{k \in S} \neg A_k \right] \leq \frac{1}{d + 1}
$$

Assuming this claim, it is easy to prove the Lovász Local Lemma.

$$
P \left[\bigwedge_{i=1}^{n} \neg A_i \right] = \prod_{i=1}^{n} P \left[\neg A_i \mid \bigwedge_{k < i} \neg A_k \right]
\geq \prod_{i=1}^{n} \left(1 - \frac{1}{d + 1} \right) = \left(1 - \frac{1}{d + 1} \right)^n > 0
$$
Proof of the Claim

- We will proceed by induction on $|S|$
- **Base Case:** If $|S| = 0$, then the claim holds, because:

$$
P \left[A_i \mid \bigwedge_{k \in S} \neg A_k \right] = P[A_i] \leq p \leq \frac{1}{e(d+1)} \leq \frac{1}{d+1}$$

- Assume that for all $S \mid S| < t$, the claim holds
- We will prove the claim for $|S| = t$. Suppose D_i be the set of all j such that the bad event A_j depends on the bad event A_i
- **Easy Case.** Suppose $S \cap D_i = \emptyset$. This case is easy, because

$$
P \left[A_i \mid \bigwedge_{k \in S} \neg A_k \right] = P[A_i] \leq p \leq \frac{1}{e(d+1)} \leq \frac{1}{d+1}$$

Lovász Local Lemma
Proof of the Claim

- **Remaining Case.** Suppose $S \cap D_i \neq \emptyset$.

\[
\Pr \left[A_i \ \bigg| \ \bigwedge_{k \in S} \neg A_k \right] = \Pr \left[A_i \ \bigg| \ \bigwedge_{k \in D_i} \neg A_k, \ \bigwedge_{k \in S \setminus D_i} \neg A_k \right]
\]

\[
= \frac{\Pr \left[A_i, \ \bigwedge_{k \in D_i} \neg A_k \ \bigg| \ \bigwedge_{k \in S \setminus D_i} \neg A_k \right]}{\Pr \left[\bigwedge_{k \in D_i} \neg A_k \ \bigg| \ \bigwedge_{k \in S \setminus D_i} \neg A_k \right]}
\]

\[
\times \frac{\Pr \left[\bigwedge_{k \in S \setminus D_i} \neg A_k \right]}{\Pr \left[A_i \ \bigg| \ \bigwedge_{k \in S \setminus D_i} \neg A_k \right]}
\]

\[
\leq \frac{\Pr \left[A_i \right]}{\Pr \left[\bigwedge_{k \in D_i} \neg A_k \ \bigg| \ \bigwedge_{k \in S \setminus D_i} \neg A_k \right]}
\]
Proof of the Claim

- Suppose $D_i = \{i_1, \ldots, i_z\}$
- Using chain rule, we can write the denominator as follows

\[
\prod_{\ell=1}^{z} \mathbb{P} \left[\nabla_{k \in S \setminus D_i} \neg \bar{A}_k, \nabla_{k' \in \{i_1, \ldots, i_{\ell-1}\}} \neg \bar{A}_{k'} \right]
\]
Proof of the Claim

Note that each probability term is condition on $< t$ bad events. So, we can apply the induction hypothesis. We get

$$
P \left[\bigwedge_{k \in D_i} \neg A_k \bigg| \bigwedge_{k \in S \setminus D_i} \neg A_k \right] \geq \prod_{\ell=1}^{z} \left(1 - \frac{1}{d+1} \right)$$

$$= \left(1 - \frac{1}{d+1} \right)^z \geq \left(1 - \frac{1}{d+1} \right)^d$$

$$\geq \frac{1}{e}$$

Now, let us return to our original expression

$$P \left[A_i \bigg| \bigwedge_{k \in S} \neg A_k \right] \leq \frac{P [A_i]}{P \left[\bigwedge_{k \in D_i} \neg A_k \bigg| \bigwedge_{k \in S \setminus D_i} \neg A_k \right]}$$

$$\leq e P[A_i] \leq \frac{1}{d+1}$$
This completes the proof by induction.

We will prove a more general result in the next lecture.