Lecture 09: Martingales and Azuma's Inequality

Disclaimer

- This is a very informal treatment of the concept of Martingales
- In particular, the intuitions are specific to discrete spaces
- Inquisitive readers are referred to study σ -algebras for a more formal treatment of this material

In this Lecture

- Martingales
- Specific to Discrete Sample Spaces
- Specifically, Doob's Martingale
- Azuma's Inequality

σ -Field

ullet Let Ω be a sample space with probability distribution p

Definition (σ -Field)

A σ -field \mathcal{F} on Ω is a collection of subsets of Ω that

- **①** Contains \emptyset and Ω ,
- 2 Is closed under unions, intersections, and complementation.

- For example $\mathcal{F}_0 = \{\emptyset, \Omega\}$ is a σ -field
- Suppose $\Omega = \{0,1\}^n$
- Let $\mathcal{F}_1 = \mathcal{F}_0 \cup \{ \ 0\{0,1\}^{n-1}, \ 1\{0,1\}^{n-1} \}$. This is also a σ -field
- Let $\mathcal{F}_2 = \{ S\{0,1\}^{n-2} \colon S \subseteq \{00,01,10,11\} \}$. We use the convention: If $S = \emptyset$ then $S\{0,1\}^{n-2} = \emptyset$. So, \mathcal{F}_2 has 16 elements, and $\mathcal{F}_1 \subseteq \mathcal{F}_2$. It is easy to verify that \mathcal{F}_2 is a σ -field.
- In general, $\mathcal{F}_i = \{ S\{0,1\}^{n-k} \colon S \subseteq \{\omega_1 \dots \omega_k \colon \omega_i \in \{0,1\}, \text{ for all } i \in \{1,\dots,k\} \} \}.$

Smallest Set Containing an Element

- Let $x \in \Omega$
- Consider a σ -field \mathcal{F} on Ω
- The smallest set in \mathcal{F} containing x is the intersection of all sets in \mathcal{F} that contain x. Formally, it is the following set

$$\mathcal{F}(x) = \bigcap_{\substack{S \in \mathcal{F} \\ x \in S}} S$$

• For example, let n=5, x=01001 and consider the σ -field \mathcal{F}_2 on Ω In this case, the smallest set $\mathcal{F}_2(x)$ in \mathcal{F}_2 containing x is $01\{0,1\}^{n-2}$

\mathcal{F} -Measurable

• Let $f: \Omega \to \mathbb{R}$ be a function

Definition (\mathcal{F} -Measurable)

The function f is \mathcal{F} -measurable if, for all $y \in \mathcal{F}(x)$, we have f(x) = f(y), where $\mathcal{F}(x)$ is the smallest subset in \mathcal{F} containing x.

- For example, let n=5 and consider the σ -field \mathcal{F}_2 on Ω
- As we had seen, we have $\mathcal{F}_2(x) = x_1 x_2 \{0,1\}^{n-2}$, where x_1 and x_2 are, respectively, the first and second bit of x
- Let f(x) be the total number of 1s in the first two coordinates of x. This function is \mathcal{F}_2 -measurable
- Let f(x) be the expected value of 1s over all strings whose first two bits are x_1x_2 . This function is \mathcal{F}_2 -measurable
- Let f(x) be the total number of 1s in the first three coordinates of x. This function is *not* \mathcal{F}_2 -measurable

Conditional Expectation

- Let p be a probability distribution over the sample space Ω
- Let \mathcal{F} be a σ -field on Ω
- Let $f: \Omega \to \mathbb{R}$ be a function
- We define the conditional expectation as a function $\mathbb{E}\left[f|\mathcal{F}\right]:\Omega\to\mathbb{R}$ defined as follows

$$\mathbb{E}\left[f|\mathcal{F}\right](x) := \frac{1}{\sum_{y \in \mathcal{F}(x)} p(y)} \sum_{y \in \mathcal{F}(x)} f(y) p(y)$$

- We emphasize that f need not be \mathcal{F} -measurable to define the expectation in this manner!
- Note that $\mathbb{E}\left[f|\mathcal{F}\right](x) = \mathbb{E}\left[f|\mathcal{F}\right](y)$, for all $y \in \mathcal{F}(x)$

A Filtration

ullet Let Ω be a sample space with probability distribution p

Definition (Filtration)

A sequence of σ -fields $\mathcal{F}_0, \mathcal{F}_1, \dots, \mathcal{F}_n$ is a *filtration* if $\{\emptyset, \Omega\} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \dots \subseteq \mathcal{F}_n$.

Intuition Slides

Sample Space

- As time progresses, new information is revealed to us
- 2 At time 1, we learn the value ω_1 of the random variable \mathbb{X}_1
- **3** At time 2, we learn the value ω_2 of the random variable \mathbb{X}_2
- **4** And so on. At time t, we learn the value ω_t of the random variable \mathbb{X}_t
- **5** By the end of time n, we know the value ω_n of the last random variable \mathbb{X}_n
- At this point of time, $f(X_1, ..., X_n)$ can be calculated, where f is a function that we are interested in

- Balls and Bins. At time i we find out the bin ω_i that the ball i goes into.
- Coin tosses. At time *i* we find out the outcome ω_i of the *i*-th coin toss.
- Hypergeometric Series. At time i we find out the color ω_i of the i-th ball draw from the jar (where sampling is being carried out without replacement).
- Bounded Difference Function. At time i we find out the outcome ω_i of the i-th variable of the function f.

Filtration

- The filtration \mathcal{F}_k is the tuple of outcomes $(\omega_1,\ldots,\omega_k)$
- ullet The filtration \mathcal{F}_0 represents no outcome is known
- ullet The filtration \mathcal{F}_n represents that all outcomes are known

Tree Representation

- Think of a rooted tree
- For every internal node, the outgoing edges represent the various possible outcomes in the next time step
- Leaves represent that all outcomes are already known
- The sequence of outcomes $(\omega_1, \ldots, \omega_n)$ represents a root to leaf path
- The filtration \mathcal{F}_k corresponding to this path is the depth-k node on this path

Measurable with respect to a Filtration

• A random variable \mathbb{X}_k will be measurable with respect to a filtration \mathcal{F}_k if the value of \mathbb{X}_k depends only on $(\omega_1, \ldots, \omega_k)$

Martingales

Definition (Martingale Sequence)

Let $\{\emptyset, \Omega\} = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n$ be a filtration. The sequence $(\mathbb{X}_1, \dots, \mathbb{X}_n)$ forms a martingale with respect to this filtration if \mathbb{X}_i is \mathcal{F}_i -measurable, for $1 \leqslant i \leqslant n$, and

$$\mathbb{E}\left[\mathbb{X}_{t+1}|\mathcal{F}_t\right] = (\mathbb{X}_t|\mathcal{F}_t),$$

for $0 \le t < n$.

- Note that given $\mathcal{F}_t = (\omega_1, \dots, \omega_t)$, the value of \mathbb{X}_t is fixed
- Note that given $\mathcal{F}_t = (\omega_1, \dots, \omega_t)$, the outcome of \mathbb{X}_{t+1} is not yet fixed and is a random

- Consider tossing a coin that gives heads with probability p, and tails with probability (1 p), independently n times
- \mathcal{F}_t is the outcomes of the first t coin tosses
- Let \mathbb{S}_t represent the number of heads in the first t coin tosses
- Note that \mathbb{S}_t is fixed given \mathcal{F}_t
- Note that $(\mathbb{S}_{t+1}|\mathcal{F}_t) = (\mathbb{S}_t|\mathcal{F}_t) + 1$ with probability p, else $(\mathbb{S}_{t+1}|\mathcal{F}_t) = (\mathbb{S}_t|\mathcal{F}_t)$ with probability (1-p)
- ullet Therefore, $\mathbb{E}\left[\mathbb{S}_{t+1}|\mathcal{F}_{t}
 ight]=\left(\mathbb{S}_{t}|\mathcal{F}_{t}
 ight)+p$
- So, \mathbb{S}_t is not a martingale sequence with respect to the filtration $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n$

- Consider the random variable $\mathbb{T}_t = \mathbb{S}_t tp$
- Note that \mathbb{T}_t is fixed given \mathcal{F}_t
- Note that $(\mathbb{T}_{t+1}|\mathcal{F}_t) = (\mathbb{S}_t|\mathcal{F}_t) + 1 (t+1)p$ with probability p, and $(\mathbb{T}_{t+1}|\mathcal{F}_t) = (\mathbb{S}_t|\mathcal{F}_t) (t+1)p$ with probability (1-p)
- ullet Therefore, $\mathbb{E}\left[\mathbb{T}_{t+1}|\mathcal{F}_t
 ight]=(\mathbb{S}_t|\mathcal{F}_t)+p-(t+1)p=(\mathbb{T}_t|\mathcal{F}_t)$
- So, the sequence $(\mathbb{T}_0, \mathbb{T}_1, \dots, \mathbb{T}_n)$ is a martingale sequence with respect to the filtration $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \dots \subseteq \mathcal{F}_n$

- Let f be a function and \mathcal{F}_t is the filtration where the first t arguments to f have been fixed
- Let \mathbb{F}_t be the random variable

$$\mathbb{F}_t = \mathbb{E}\left[f(\omega_1,\ldots,\omega_t,\mathbb{X}_{k+1},\ldots,\mathbb{X}_n)\right]$$

- Prove: $(\mathbb{F}_0, \dots, \mathbb{F}_n)$ is a martingale with respect to the filtration $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \dots \subseteq \mathcal{F}_n$
- This martingale is called: Doob's Martingale

Martingale Difference Sequence

- Let $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_n$ be a filtration
- Let $(X_0, ..., X_n)$ be a martingale sequence with respect to the filtration above
- Let $\mathbb{Y}_0 := \mathbb{X}_0$, and $\mathbb{Y}_{t+1} = \mathbb{X}_{t+1} \mathbb{X}_t$, for $0 \leqslant t < n$
- Intuition: \mathbb{Y}_{t+1} measures the increase in \mathbb{X}_{t+1} from \mathbb{X}_t
- ullet Note that $\mathbb{E}\left[\mathbb{Y}_{t+1}|\mathcal{F}_{t}
 ight]=0$

Azuma's Inequality

Theorem (Azuma's Inequality)

Suppose $(\mathbb{Y}_0, \dots, \mathbb{Y}_n)$ be a martingale difference sequence with respect to the filtration $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \dots \subseteq \mathcal{F}_n$. Suppose $a_{t+1} \leqslant (\mathbb{Y}_{t+1}|\mathcal{F}_t) \leqslant b_{t+1}$, for $0 \leqslant t < n$. Then

$$\mathbb{P}\left[\sum_{i=1}^{n} \mathbb{Y}_{i} \geqslant t\right] \leqslant \exp\left(-\frac{2t^{2}}{\sum_{i=1}^{n} (b_{i} - a_{i})^{2}}\right)$$

• We only show how to bound

$$\mathbb{E}\left[\exp\left(h\sum_{i=1}^n\mathbb{Y}_i\right)\right]$$

• Rest of the proof is identical to Hoeffding's Bound

• We are interested in computing

$$\mathbb{E}\left[\exp\left(h\sum_{i=1}^{n}\mathbb{Y}_{i}\right)\right] = \mathbb{E}\left[\exp\left(h\sum_{i=1}^{n-1}\mathbb{Y}_{i}\right)\exp\left(h\mathbb{Y}_{n}\right)\right]$$

$$\leqslant \mathbb{E}\left[\exp\left(h\sum_{i=1}^{n-1}\mathbb{Y}_{i}\right)\exp\left(p_{n}e^{a_{n}} + q_{n}e^{b_{n}}\right)\right]$$

where, $p_n + q_n = 1$ and $p_n a_n + q_n b_n = 0$.

Inductively,

$$\mathbb{E}\left[\exp\left(h\sum_{i=1}^{n}\mathbb{Y}_{i}\right)\right]\leqslant\prod_{i=1}^{n}\left(p_{i}\mathrm{e}^{a_{i}}+q_{i}\mathrm{e}^{b_{i}}\right)$$

• Rest of the proof is identical to the Hoeffding Bound proof

Difference from Hoeffding's Bound

- The distribution \mathbb{Y}_{t+1} can depend on the outcomes $(\omega_1, \dots, \omega_t)$
- But the only restrictions are that $\mathbb{E}\left[\mathbb{Y}_{t+1}|\mathcal{F}_t\right]=0$ and the outcomes $(\mathbb{Y}_{t+1}|\mathcal{F}_t)$ are in the range $[a_{t+1},b_{t+1}]$
- Prove: The Bounded Difference Inequality using Azuma's Inequality
- Prove: The concentration of the Hypergeometric Distribution using Azuma's Inequality