
Lecture 07: Independent Bounded Differences
Inequality
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Setting

Let Ω1, . . . ,Ωn be samples spaces
Define Ω := Ω1 ×· · · × Ωn

Let f : Ω→ R
Let X = (X1, . . . ,Xn) be a random variable such that each Xi

are independent and Xi is over the sample space Ωi
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Bounded Differences

Definition (Bounded Differences)

Let function f : Ω→ R. The function f has bounded differences, if
for all x , x ′ ∈ Ω, i ∈ [n], and x and x ′ differ only at i-th coordinate,
the output of the function

∣∣f (x)− f (x ′)
∣∣ 6 ci .
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Bounded Difference Inequality

We will state the following bound without proof

Theorem (Bounded Difference Inequality)

P
[
f (X)− E

[
f (X)

]
> t
]
6 exp

−2t2/ n∑
i=1

c2
i


We can apply the same inequality to −f and deduce that

P
[
f (X)− E

[
f (X)

]
6 −t

]
6 exp

−2t2/ n∑
i=1

c2
i


Intuition: f (X) is concentrated around E

[
f (X)

]
within a radius of

t ≈
√
n
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Examples I

Prove Chernoff-Hoeffding’s bound as a corollary of this result

Let Gn,p be a a random graph over n vertices where each edge
is included in the graph independently with probability p. Note
that we have m random variables, one indicator variable for
each edge being included. Note that the chromatic number of
the graph is a function with bounded difference.

Several graph properties like number of connected components

Longest increasing subsequence

Max load in balls-and-bins experiments

Max load in the power-of-two-choices is not bounded
difference function
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Applicability and Meaningfulness of the Bounds

Although the theorem is applicable, the bound it produces
might not be applicable
The bound says that the probability mass is concentrated
within ≈

√
n of the expected value E

[
f (X)

]
If E

[
f (X)

]
:= µ is ω(

√
n) then the theorem gives a good

bound. The distribution is concentrated within o(µ) from the
average µ. This, we will consider a good concentration bound
If E

[
f (X)

]
is O(

√
n) then the theorem does not give a good

bound. For example, longest increasing subsequence, max-load
in balls-and-bins
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Hamming Distance

Definition (Hamming Distance)

Let x , x ′ ∈ Ω := Ω1 ×· · · × Ωn. We define

dH(x , x ′) :=
∣∣∣{i : xi 6= x ′i

}∣∣∣
The Hamming distance counts the number of indices where x
and x ′ differ
Let A ⊆ Ω and dH(x ,A) := miny∈A dH(x , y). Intuitively,
dH(x ,A) > t implies that x is t-far from every point in A

Definition
The set Ak is defined as

Ak :=
{
x : x ∈ Ω, dH(x ,A) 6 k

}
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Distance from Dense Sets

Lemma

P [X ∈ A] · P
[
dH(X,A) > t

]
6 exp

(
−t2/2n

)
Intuition

Suppose P [X ∈ A] = 1/2 then we have

P [X ∈ At−1] > 1− 2 exp
(
−t2/2n

)
That is, nearly all points lie within t ≈

√
n distance from the

set A
Note that this result hold for all sets A
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Proof based on the Bounded Differences Inequality I

Note that dH(·,A) is a bounded difference function with ci = 1
For µ = E

[
dH(X,A)

]
, consider the inequality

P
[
dH(X,A)− µ 6 −t

]
6 exp

(
−2t2/n

)
We use t = µ and we get:

P
[
dH(X,A) 6 0

]
6 exp

(
−2µ2/n

)
Note that
P
[
dH(X,A) 6 0

]
= P

[
dH(X,A) = 0

]
= P [X ∈ A] =: ν

Now, we can relate µ and ν:

µ 6

√
n

2
log(1/ν)
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Proof based on the Bounded Differences Inequality II

Now, we apply the other inequality

P
[
dH(X,A)− µ > t

]
6 exp

(
−2t2/n

)
By change of variables, we have

P
[
dH(X,A) > t

]
6 exp

(
−2(t − µ)2/n

)
Case 1: t > 2µ. For this case, we can conclude that
t/2 6 (t − µ). So, we have:

P
[
dH(X,A) > t

]
6 exp

(
−2(t − µ)2/n

)
6 exp

(
−t2/2n

)
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Proof based on the Bounded Differences Inequality III

Case 2: 0 6 t 6 2µ. For this case, we can conclude that
P [X ∈ A] 6 exp(−2µ2/n) 6 exp(−t2/2n)

Therefore, the two cases imply

min
{
P [X ∈ A] ,P

[
dH(X,A) > t

]}
6 exp

(
−t2/2n

)
This inequality, implies, for all t, that

P [X ∈ A] · P
[
dH(X,A) > t

]
6 exp

(
−t2/2n

)
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An Application

(Slightly weaker-version of) Chernoff-bound for B(n, 1/2).
Consider an uniform distribution over Ω = {0, 1}n

Let A be the set of all binary strings that have at most n/2 1s
A string x with dH(x ,A) > t implies that x has at least
(n/2) + t 1s
So, the probability that a uniformly sampled binary string has
(n/2) + t 1s is at most exp(−t2/2n)
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