Lecture 07: Independent Bounded Differences Inequality

Setting

- Let $\Omega_{1}, \ldots, \Omega_{n}$ be samples spaces
- Define $\Omega:=\Omega_{1} \times \cdots \times \Omega_{n}$
- Let $f: \Omega \rightarrow \mathbb{R}$
- Let $\mathbb{X}=\left(\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}\right)$ be a random variable such that each \mathbb{X}_{i} are independent and \mathbb{X}_{i} is over the sample space Ω_{i}

Definition (Bounded Differences)

Let function $f: \Omega \rightarrow \mathbb{R}$. The function f has bounded differences, if for all $x, x^{\prime} \in \Omega, i \in[n]$, and x and x^{\prime} differ only at i-th coordinate, the output of the function $\left|f(x)-f\left(x^{\prime}\right)\right| \leqslant c_{i}$.

Bounded Difference Inequality

We will state the following bound without proof

Theorem (Bounded Difference Inequality)

$$
\mathbb{P}[f(\mathbb{X})-\mathbb{E}[f(\mathbb{X})] \geqslant t] \leqslant \exp \left(-2 t^{2} / \sum_{i=1}^{n} c_{i}^{2}\right)
$$

We can apply the same inequality to $-f$ and deduce that

$$
\mathbb{P}[f(\mathbb{X})-\mathbb{E}[f(\mathbb{X})] \leqslant-t] \leqslant \exp \left(-2 t^{2} / \sum_{i=1}^{n} c_{i}^{2}\right)
$$

Intuition: $f(\mathbb{X})$ is concentrated around $\mathbb{E}[f(\mathbb{X})]$ within a radius of $t \approx \sqrt{n}$

- Prove Chernoff-Hoeffding's bound as a corollary of this result
- Let $\mathcal{G}_{n, p}$ be a a random graph over n vertices where each edge is included in the graph independently with probability p. Note that we have m random variables, one indicator variable for each edge being included. Note that the chromatic number of the graph is a function with bounded difference.
- Several graph properties like number of connected components
- Longest increasing subsequence
- Max load in balls-and-bins experiments
- Max load in the power-of-two-choices is not bounded difference function

Applicability and Meaningfulness of the Bounds

- Although the theorem is applicable, the bound it produces might not be applicable
- The bound says that the probability mass is concentrated within $\approx \sqrt{n}$ of the expected value $\mathbb{E}[f(\mathbb{X})]$
- If $\mathbb{E}[f(\mathbb{X})]:=\mu$ is $\omega(\sqrt{n})$ then the theorem gives a good bound. The distribution is concentrated within $o(\mu)$ from the average μ. This, we will consider a good concentration bound
- If $\mathbb{E}[f(\mathbb{X})]$ is $O(\sqrt{n})$ then the theorem does not give a good bound. For example, longest increasing subsequence, max-load in balls-and-bins

Hamming Distance

Definition (Hamming Distance)

Let $x, x^{\prime} \in \Omega:=\Omega_{1} \times \cdots \times \Omega_{n}$. We define

$$
d_{H}\left(x, x^{\prime}\right):=\left|\left\{i: x_{i} \neq x_{i}^{\prime}\right\}\right|
$$

- The Hamming distance counts the number of indices where x and x^{\prime} differ
- Let $A \subseteq \Omega$ and $d_{H}(x, A):=\min _{y \in A} d_{H}(x, y)$. Intuitively, $d_{H}(x, A) \geqslant t$ implies that x is t-far from every point in A

Definition

The set A_{k} is defined as

$$
A_{k}:=\left\{x: x \in \Omega, d_{H}(x, A) \leqslant k\right\}
$$

Distance from Dense Sets

Lemma

$$
\mathbb{P}[\mathbb{X} \in A] \cdot \mathbb{P}\left[d_{H}(\mathbb{X}, A) \geqslant t\right] \leqslant \exp \left(-t^{2} / 2 n\right)
$$

Intuition

- Suppose $\mathbb{P}[\mathbb{X} \in A]=1 / 2$ then we have

$$
\mathbb{P}\left[\mathbb{X} \in A_{t-1}\right] \geqslant 1-2 \exp \left(-t^{2} / 2 n\right)
$$

That is, nearly all points lie within $t \approx \sqrt{n}$ distance from the set A

- Note that this result hold for all sets A
- Note that $d_{H}(\cdot, A)$ is a bounded difference function with $c_{i}=1$
- For $\mu=\mathbb{E}\left[d_{H}(\mathbb{X}, A)\right]$, consider the inequality

$$
\mathbb{P}\left[d_{H}(\mathbb{X}, A)-\mu \leqslant-t\right] \leqslant \exp \left(-2 t^{2} / n\right)
$$

- We use $t=\mu$ and we get:

$$
\mathbb{P}\left[d_{H}(\mathbb{X}, A) \leqslant 0\right] \leqslant \exp \left(-2 \mu^{2} / n\right)
$$

- Note that

$$
\mathbb{P}\left[d_{H}(\mathbb{X}, A) \leqslant 0\right]=\mathbb{P}\left[d_{H}(\mathbb{X}, A)=0\right]=\mathbb{P}[\mathbb{X} \in A]=: \nu
$$

- Now, we can relate μ and ν :

$$
\mu \leqslant \sqrt{\frac{n}{2} \log (1 / \nu)}
$$

- Now, we apply the other inequality

$$
\mathbb{P}\left[d_{H}(\mathbb{X}, A)-\mu \geqslant t\right] \leqslant \exp \left(-2 t^{2} / n\right)
$$

- By change of variables, we have

$$
\mathbb{P}\left[d_{H}(\mathbb{X}, A) \geqslant t\right] \leqslant \exp \left(-2(t-\mu)^{2} / n\right)
$$

- Case 1: $t \geqslant 2 \mu$. For this case, we can conclude that $t / 2 \leqslant(t-\mu)$. So, we have:

$$
\mathbb{P}\left[d_{H}(\mathbb{X}, A) \geqslant t\right] \leqslant \exp \left(-2(t-\mu)^{2} / n\right) \leqslant \exp \left(-t^{2} / 2 n\right)
$$

- Case 2: $0 \leqslant t \leqslant 2 \mu$. For this case, we can conclude that $\mathbb{P}[\mathbb{X} \in A] \leqslant \exp \left(-2 \mu^{2} / n\right) \leqslant \exp \left(-t^{2} / 2 n\right)$
- Therefore, the two cases imply

$$
\min \left\{\mathbb{P}[\mathbb{X} \in A], \mathbb{P}\left[d_{H}(\mathbb{X}, A) \geqslant t\right]\right\} \leqslant \exp \left(-t^{2} / 2 n\right)
$$

- This inequality, implies, for all t, that

$$
\mathbb{P}[\mathbb{X} \in A] \cdot \mathbb{P}\left[d_{H}(\mathbb{X}, A) \geqslant t\right] \leqslant \exp \left(-t^{2} / 2 n\right)
$$

An Application

(Slightly weaker-version of) Chernoff-bound for $B(n, 1 / 2)$.

- Consider an uniform distribution over $\Omega=\{0,1\}^{n}$
- Let A be the set of all binary strings that have at most $n / 21 \mathrm{~s}$
- A string x with $d_{H}(x, A) \geqslant t$ implies that x has at least $(n / 2)+t 1 \mathrm{~s}$
- So, the probability that a uniformly sampled binary string has $(n / 2)+t 1 s$ is at most $\exp \left(-t^{2} / 2 n\right)$

