Lecture 06: Concentration Bounds (Recall, Applications, Generalizations)

Recall: Proof Outline of Chernoff-Bound

- Let \mathbb{X} be a Bernoulli random variable that is 1 with probability p; otherwise it is 0 with probability $(1-p)$.
- Let $\mathbb{X}^{(1)}, \ldots, \mathbb{X}^{(n)}$ are n-independent copies of the random variable \mathbb{X}
- We define $\mathbb{S}_{n}=\sum_{i=1}^{n} \mathbb{X}^{(i)}$
- Note that $\mathbb{E}\left[\mathbb{S}_{n}\right]=n p$, using linearity of expectation
- We want to understand how small the following expression is:

$$
\mathbb{P}\left[\mathbb{S}_{n} \geqslant n(p+\varepsilon)\right]
$$

Recall: Proof Outline of Chernoff-Bound

- The first step is: For any $h>0$, we have

$$
\mathbb{P}\left[\mathbb{S}_{n} \geqslant n(p+\varepsilon)\right]=\mathbb{P}\left[\exp \left(h \mathbb{S}_{n}\right) \geqslant \exp (h n(p+\varepsilon))\right]
$$

We use the fact that the function $\exp (h x)$ is monotonically increasing for $h>0$

- We apply Markov to the right hand side to obtain

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{S}_{n} \geqslant n(p+\varepsilon)\right] & =\mathbb{P}\left[\exp \left(h \mathbb{S}_{n}\right) \geqslant \exp (h n(p+\varepsilon))\right] \\
& \leqslant \frac{\mathbb{E}\left[\exp \left(h \mathbb{S}_{n}\right)\right]}{\exp (h n(p+\varepsilon))}
\end{aligned}
$$

- Using the independence of $\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}$, we get

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{S}_{n} \geqslant n(p+\varepsilon)\right] & \leqslant \frac{\mathbb{E}\left[\exp \left(h \mathbb{S}_{n}\right)\right]}{\exp (h n(p+\varepsilon))} \\
& =\frac{\prod_{i=1}^{n} \mathbb{E}\left[\exp \left(h \mathbb{X}_{i}\right)\right]}{\exp (h n(p+\varepsilon))}
\end{aligned}
$$

- Note that $\mathbb{E}[\exp (h \mathbb{X})]=1-p+p \exp (h)$. So, we get the bound:

$$
\mathbb{P}\left[\mathbb{S}_{n} \geqslant n(p+\varepsilon)\right] \leqslant\left(\frac{1-p+p \exp (h)}{\exp (h(p+\varepsilon))}\right)^{n}
$$

- The above statement is true for all $h>0$. We set $h=h^{*}$ for which the right hand side expression is minimized. Note that the expression is minimized for

$$
\exp \left(h^{*}\right)=\frac{(p+\varepsilon)(1-p))}{p(1-p-\varepsilon)}
$$

- For this setting, we get

$$
\mathbb{P}\left[\mathbb{S}_{n} \geqslant n(p+\varepsilon)\right] \leqslant 2^{-n \mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)}
$$

- Using Taylor expansion around $\varepsilon_{0}=0$, we can show that $2^{-\mathrm{D}_{\mathrm{KL}}(p+\varepsilon, p)}$ expression is $\leqslant \exp \left(-2 \varepsilon^{2}\right)$
- Overall, we get

$$
\mathbb{P}\left[\mathbb{S}_{n} \geqslant n(p+\varepsilon)\right] \leqslant \exp \left(-2 \varepsilon^{2} n\right)
$$

- What is the probability $\mathbb{P}\left[\mathbb{S}_{n} \leqslant n(p-\varepsilon)\right]$? Hint: Apply the previous bound for $\mathbb{Y}=1-\mathbb{X}$ random variable.
- What is the probability $\mathbb{P}\left[\left|\mathbb{S}_{n}-p n\right| \geqslant n \varepsilon\right]$?

Application: Estimating Bias of a Coin

Suppose there is a coin with unknown bias p. How will you estimate p within an additive error ε with probability $1-\nu$?

- We perform n random tosses of the coin
- We output our estimate \widetilde{p} to be the number of heads observed divided by n
- Choose n such that $2 \exp \left(-2 \varepsilon^{2} n\right) \leqslant \nu$

Application: Soundness Amplification

Suppose $\mathcal{A}(x ; r)$ is a randomized algorithm that decides whether $x \in L$ or not. Let \mathbb{U} be the uniform distribution over the random tape for $\mathcal{A}(\cdot ; \cdot)$. We are given the following guarantee:

- If $x \in L$, then $\mathbb{P}[\mathcal{A}(x ; \mathbb{U})=1] \geqslant 0.7$, and
- If $x \notin L$, then $\mathbb{P}[\mathcal{A}(x ; \mathbb{U})=0] \geqslant 0.7$
- Run $\mathcal{A}\left(x ; r^{(i)}\right)$, where $r^{(i)}$ is random tape independently drawn according to \mathbb{U}, and θ_{i} be the output of the algorithm
- Output the majority of the bits $\left\{\theta_{1}, \ldots, \theta_{n}\right\}$

How to choose n such that the probability of our algorithm to correctly output $x \in L$ or not with probability $1-\nu$? Hint: Our algorithm is wrong when the set $\left\{\theta_{1}, \ldots, \theta_{n}\right\}$ has $<n /$ correct answer bits.

- $\left(\mathbb{X}_{1}, \ldots, \mathbb{X}_{n}\right)$ are independent random variables
- \mathbb{X}_{i} is a random variable in the range $[0,1]$ such that $\mathbb{E}\left[\mathbb{X}_{i}\right]=p_{i}$
- We define $n p=\sum_{i=1}^{n} p_{i}$ and $\mathbb{S}_{n}=\sum_{i=1}^{n} \mathbb{X}_{i}$

Another Chernoff-Bound

- We follow the previous proof's template

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{S}_{n} \geqslant n(p+\varepsilon)\right] & \leqslant \frac{\mathbb{E}\left[\exp \left(h \mathbb{S}_{n}\right)\right]}{\exp (h n(p+\varepsilon))} \\
& =\frac{\prod_{i=1}^{n} \mathbb{E}\left[h \mathbb{X}_{i}\right]}{\exp (h n(p+\varepsilon))}
\end{aligned}
$$

- Claim: $\mathbb{E}\left[h \mathbb{X}_{i}\right] \leqslant \mathbb{E}\left[B\left(1, p_{i}\right)\right]$. Recall that $B\left(1, p_{i}\right)$ is the random variable that outputs 1 with probability $p_{i} ; 0$ otherwise. The above inequality is a consequence of Jensen's Inequality. Let f be a convex downward function, i.e. it looks like $\exp (x)$. The chord joining $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)$ is below the chord joining $\left(x_{0}^{\prime}, f\left(x_{0}^{\prime}\right)\right)$ and $\left(x_{1}^{\prime}, f\left(x_{1}^{\prime}\right)\right)$ when $x_{0}, x_{1} \in\left[x_{0}^{\prime}, x_{1}^{\prime}\right]$.
- Intuition: $\mathbb{E}\left[h \mathbb{X}_{i}\right]$, when $\mathbb{E}\left[\mathbb{X}_{i}\right]=p_{i}$, is maximized when $\mathbb{X}_{i}=B\left(n, p_{i}\right)$
- So, we have:

$$
\mathbb{P}\left[\mathbb{S}_{n} \geqslant n(p+\varepsilon)\right] \leqslant \frac{\prod_{i=1}^{n}\left(1-p_{i}+p_{i} \exp (h)\right)}{\exp (h n(p+\varepsilon))}
$$

- Now we apply AM-GM inequality to the right hand side

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{S}_{n} \geqslant n(p+\varepsilon)\right] & \leqslant\left(\frac{\frac{1}{n} \sum_{i=1}^{n} 1-p_{i}+p_{i} \exp (h)}{\exp (h(p+\varepsilon))}\right)^{n} \\
& =\left(\frac{1-p+p \exp (h)}{\exp (h(p+\varepsilon))}\right)^{n}
\end{aligned}
$$

- Now we bound as in the original Chernoff bound proof
- Let $\left(\mathbb{X}_{1}, \ldots \mathbb{X}_{n}\right)$ be independent random variables
- Let \mathbb{X}_{i} has range $\left[a_{i}, b_{i}\right]$ with $\mathbb{E}\left[\mathbb{X}_{i}\right]=p_{i}$
- We define $\mathbb{S}_{n}=\sum_{i=1}^{n} \mathbb{X}_{i}$ and $n p=\sum_{i=1}^{n} p_{i}$

Hoeffding's Bound

- As in the previous case, we can get:

$$
\mathbb{P}\left[\mathbb{S}_{n} \geqslant n(p+\varepsilon)\right] \leqslant \frac{\prod_{i=1}^{n} \mathbb{E}\left[h \mathbb{X}_{i}\right]}{\exp (h n(p+\varepsilon))}
$$

- By Jensen's Inequality we can bound the right hand side by consider a distribution that only puts probability on a_{i} and b_{i} such that it has expectation p_{i}. This distribution outputs a_{i} with probability $\frac{b_{i}-p_{i}}{b_{i}-a_{i}}$, and outputs b_{i} with probability $\frac{p_{i}-a_{i}}{b_{i}-a_{i}}$. We use this distribution to obtain the upper bound on the right hand side.

$$
\mathbb{P}\left[\mathbb{S}_{n} \geqslant n(p+\varepsilon)\right] \leqslant \frac{\prod_{i=1}^{n}\left(\frac{b_{i}-p_{i}}{b_{i}-a_{i}} \exp \left(h a_{i}\right)+\frac{p_{i}-a_{i}}{b_{i}-a_{i}} \exp \left(h b_{i}\right)\right)}{\exp (h n(p+\varepsilon))}
$$

- How to proceed to get an upper bound?

