
Lecture 05: Concentration Bounds
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Markov Inequality I

Theorem (Markov Inequality)

Let X be a positive random variable. Then the following holds:

P [X > t] 6
E [X]

t

We only present the proof when the sample space Ω is discrete

Suppose this statement is false, i.e.,

P [X > t] >
E [X]

t

Concentration



Markov Inequality II

Then we can perform the following analysis

E [X ] =
∑
i∈Ω

i · P [X = i ]

=
∑

i∈Ω: i<t

i · P [X = i ] +
∑

i∈Ω: i>t

i · P [X = i ]

>
∑

i∈Ω: i<t

0 · P [X = i ] +
∑

i∈Ω: i>t

t · P [X = i ]

= t · P [X > t] > E [X]

Hence, contradiction. This proves the theorem

The probability distribution that shows that this inequality is
tight is:

P [X = 0] = 1− 1/t and P [X = t] = 1/t
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Chebyshev’s Inequality

Theorem (Chebyshev’s inequality)

P
[∣∣X− E [X ]

∣∣ > t
]
6

Var [X]

t2

Note that P
[∣∣X− E [X ]

∣∣ > t
]

= P
[(
X− E [X ]

)2
> t2

]
Apply Markov Inequality
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Some Exercises

Compute the E [X] and Var [X] for the following probability
distributions

1 P [X = 0] = 1− 1/t and P [X = t] = 1/t
2 For positive constant p, P [X = 0] = 1− p and P [X = 1] = p.

Prove the following properties for independent probability
distributions X and Y

1 Prove that E
[
exp (X + Y)

]
= E

[
exp (X)

]
· E
[
exp (Y)

]
2 Prove that Var [X + Y] = Var [X] + Var [Y]
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Chernoff Bound

Let X be the probability distribution such that
P [X = 0] = 1− p and P [X = 1] = p (Bernoulli variable)
Let B(n, p) be the random variable

∑n
i=1 X(i), where X(i) is

the i-th independent sample according to the distribution X
B(n, p) (sum of n independent Bernoulli variables)

Theorem (Chernoff Bound)

For 0 < t < 1− p, we have

P
[
B(n, p)− np > nt

]
6 2−nDKL(p+t,p) 6 exp

(
−2t2n

)
DKL (·, ·) is the Kullback-Leibler divergence and is defined as
follows

DKL (α, β) := α lg
(
α

β

)
+ (1− α) lg

(
1− α
1− β

)
It is always > 0. Why?
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Comments on the Bound

Substituting t = 1/
√
n, we get that the probability

P
[
B(n, p) > np +

√
n
]
6 const., B(n, p) is very strongly

concentrated around its mean!
Chernoff Bound is also very tight. That is, we have

P
[
B(n, p)− np > nt

]
>

exp
(
−2t2n

)
poly(n)

This can be proven using “Stirling Approximation” or “The
Method of Types”
Even using limited independence, one can get the same bound
as Chernoff Bound: “Chernoff-Hoeffding Bounds for
Applications with Limited Independence, ” by Jeanette P.
Schmidth, Alan Siegel, and Aravind Srinivasan.
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Proof of Chernoff Bound I

We are interested in bounding

P
[
B(n, p) > n(p + t)

]
For any h > 0, this probability is identical to

P
[
exp
(
hB(n, p)

)
> exp

(
hn(p + t)

)]

Concentration



Proof of Chernoff Bound II

By Markov Inequality, we get

6
E
[
exp
(
hB(n, p)

)]
exp
(
hn(p + t)

)
=

E
[
exp
(
h
∑n

i=1 X(i)
)]

exp
(
hn(p + t)

)
=

∏n
i=1 E

[
exp
(
hX(i)

)]
exp
(
hn(p + t)

)
=

(
1− p + p exp(h)

exp
(
h(p + t)

) )n
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Proof of Chernoff Bound III

This expression is an upper-bound for all h > 0.

So, we choose h that minimizes the upper bound expression.

Using basic calculus, it can be shown that the expression

E =
1− p + p exp(h)

exp
(
h(p + t)

)
is minimized for

exp(h) =
(1− p)(p + t)

p(1− p − t)

Note that here we are using the fact that (1− p − t) > 0
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Proof of Chernoff Bound IV

Now, let us calculate the expression E

1− p + (1−p)(p+t)
(1−p−t)(

(1−p)(p+t)
p(1−p−t)

)p+t =
(1− p) pp+t (1− p − t)p+t

(1− p − t) (1− p)p+t (p + t)p+t

=

(
1− p

1− p − t

)1−p−t
·
(

p

p + t

)p+t

Note that the expression E we obtained satisfies

− lg E = DKL (p + t, p)

Therefore we get the first part of the Chernoff bound:

P
[
B(n, p) > n(p + t)

]
6 En = 2−nDKL(p+t,p)
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Proof of Chernoff Bound V

For the final part of the inequality, we need to show that(
1− p

1− p − t

)1−p−t
·
(

p

p + t

)p+t

6 exp
(
−2t2

)
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Proof of Chernoff Bound VI

First Attempt (Which will fail)

1− p

1− p − t
= 1 +

t

1− p − t
6 exp

(
t

1− p − t

)
Using the fact that 1 + x 6 exp(x)

p

p + t
= 1− t

p + t
6 exp

(
t

p + t

)
Using the fact that 1− x 6 exp(−x)

Therefore,

E =

(
1− p

1− p − t

)1−p−t
·
(

p

p + t

)p+t

6 exp(t) · exp(−t) = 1

Although this is true, but we do not get anything nontrivial.
Our target is to show that E 6 exp(−2t2).
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Proof of Chernoff Bound VII
Second Attempt
We use p = 1− p for brevity

f (t) := lnE = (p + t) ln
(

p
p+t

)
+ (p − t) ln

(
p

p−t

)
Observe that f (0) = 0
Note that

f ′(t) = ln
(

p

p + t

)
− 1− ln

(
p

p − t

)
+ 1

= ln
(

p

p + t

)
− ln

(
p

p − t

)
Observe that f ′(0) = 0
Note that

f ′′(t) = − 1
p + t

− 1
p − t

= − 1
(p + t)(p − t)
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Proof of Chernoff Bound VIII

Now, we use Taylor Series expansion around x0 = 0. There
exists a positive constant c ∈ (0, t] such that:

f (t) = f (0) + f ′(0) · t + f ′′(c) · t
2

2

= − 1
(p + c)(p − c)

t2

2
6 −2t2

For the last step, we used AM-GM inequality:√
(p + c)(p − c) 6

(p + c) + (p − c)

2
=

1
2

Recall that we had defined f (t) = lnE , so f (t) 6 −2t2
implies E 6 exp(−2t2). This completes the proof of the last
part of Chernoff Bound.
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