Lecture 03: Balls \& Bins (Birthday Paradox, Max-Load)

Balls and Bins Problems

- There are m balls and n bins
- Each balls is independently thrown into a bin that is chosen uniformly at random
- $\left(\mathbb{T}_{1}, \ldots, \mathbb{T}_{m}\right)$ be the joint distribution such that \mathbb{T}_{i} represents the bin into which the i-th ball is thrown
- For $1 \leqslant i<j \leqslant m$, let $\mathbb{X}_{i, j}$ be the indicator variable for the event that the i-th ball and the j-th ball fall into the same variable, i.e., indicator variable for the event $\mathbb{T}_{i}=\mathbb{T}_{j}$
- We are interested in computing the "expectation of the random variable $\mathbb{X}_{i, j}$ "

$$
\begin{aligned}
\mathbb{E}\left[\mathbb{X}_{i, j}\right] & =\mathbb{P}\left[\mathbb{X}_{i, j}=1\right]=\mathbb{P}\left[\mathbb{T}_{i}=\mathbb{T}_{j}\right] \\
& =\sum_{t=1}^{n} \mathbb{P}\left[\mathbb{T}_{i}=\mathbb{T}_{j}=t\right]=n \cdot 1 / n^{2}=1 / n
\end{aligned}
$$

- Let $\mathbb{X}=\sum_{1 \leqslant i<j \leqslant m} \mathbb{X}_{i, j}$
- The random variable \mathbb{X} counts the number of collisions that occur
- We are interested in the expected number of collisions

$$
\begin{aligned}
\mathbb{E}[\mathbb{X}] & =\mathbb{E}\left[\sum_{1 \leqslant i<j \leqslant m} \mathbb{X}_{i, j}\right] \\
& =\sum_{1 \leqslant i<j \leqslant m} \mathbb{E}\left[\mathbb{X}_{i, j}\right] \quad \text { By the Linearity of Expectation } \\
& =\binom{m}{2} \frac{1}{n}
\end{aligned}
$$

- Note that for $m=\sqrt{2 n}$, we have $\mathbb{E}[\mathbb{X}]=1$
- The "average number of collisions" at $m=\sqrt{2 n}$ is 1 , but how does the probability of this event behave like?

Birthday Paradox

There are m people in a room. Assume that the birthday of people are distributed uniformly at random over the 365 days in the year. What is the number of people m that ensures that two people share a birthday with probability 0.9 ?

Birthday Paradox - Balls and Bins Versions

- We want to find the value of m such that throwing m balls in $n=365$ bins ensures a collision with probability 0.9
- Let $\mathrm{NoColl}_{\leqslant t}$ represent the probability that $\mathbb{T}_{1}, \ldots, \mathbb{T}_{t}$ are all distinct
- Note that

$$
\begin{aligned}
\mathbb{P}\left[\text { NoColl }_{\leqslant t}\right] & =1 \cdot\left(1-\frac{1}{n}\right) \cdot\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{t-1}{n}\right) \\
& =\prod_{t=0}^{t-1}\left(1-\frac{t}{n}\right)
\end{aligned}
$$

- We are interested in finding m such that the probability of collision is high
- Alternately, we are interested in showing the probability of NoColl $_{\leqslant m}$ is small

$$
\begin{aligned}
\mathbb{P}\left[\mathrm{NoColl}_{\leqslant m}\right] & =\prod_{t=1}^{m-1}\left(1-\frac{t}{n}\right) \\
& \leqslant \prod_{t=1}^{m-1} \exp \left(-\frac{t}{n}\right)=\exp \left(-\sum_{t=0}^{m-1} t / n\right) \\
& =\exp (-(m-1) m / 2 n)
\end{aligned}
$$

- Substituting $m=c \sqrt{n}$, for a suitable constant $c>0$, ensures that $\exp (-(m-1) m / 2 n) \leqslant 0.1$

Birthday Paradox - Balls and Bins Versions

- We are interested in finding out m such that we can throw m balls without getting a collision, with high probability
- That is, we are interested in showing that the probability of $\mathrm{NoColl}_{\leqslant m}$ is high

$$
\begin{aligned}
\mathbb{P}\left[\text { NoColl }_{\leqslant m}\right] & =\prod_{t=1}^{m-1}\left(1-\frac{t}{n}\right) \geqslant \prod_{t=0}^{m-1} \exp \left(-\frac{t}{n}-\frac{t^{2}}{n^{2}}\right) \\
& =\exp \left(-\sum_{t=0}^{m-1} t / n-\sum_{t=0}^{m-1} t^{2} / n^{2}\right) \\
& =\exp \left(-\frac{m(m-1)}{2 n}-\frac{m(m-0.5)(m-1)}{3 n^{2}}\right)
\end{aligned}
$$

- For $m=d \sqrt{n}$, the first term in the exponent dominates and the second term is $o(1)$

Birthday Paradox - Balls and Bins Versions

- For a constant $d>0$ we can ensure that the final probability term is $\geqslant 0.9 \mathrm{~s}$

Conclusion: As m increases from $d \sqrt{n}$ to $c \sqrt{n}$ the probability of no-collisions transitions from 0.9 to 0.1 .

Recommended: Plot the probability of no-collisions for $m=1$ to $m=n$, for large values of n. How quickly does the probability transition from "high" to "low" as n increases?

Number of Empty Bins

- Let \mathbb{X}_{i} represent the indicator variable for the i-th bin being empty, i.e., the indicator of the event: $\mathbb{T}_{j} \neq i$, for all $i \in\{1, \ldots, m\}$
- Note that

$$
\mathbb{E}\left[\mathbb{X}_{i}\right]=\mathbb{P}\left[\mathbb{X}_{i}=1\right]=\left(1-\frac{1}{n}\right)^{m}
$$

- Let $\mathbb{X}=\sum_{t=0}^{n} \mathbb{X}_{i}$ represent the number of empty bins

$$
\mathbb{E}[\mathbb{X}]=\mathbb{E}\left[\sum_{t=1}^{n} \mathbb{X}_{i}\right]=\sum_{t=1}^{n} \mathbb{E}\left[\mathbb{X}_{i}\right]=n\left(1-\frac{1}{n}\right)^{m} \approx n \exp (-m / n)
$$

- For $m=n$, we expect (roughly) n / e empty bins! For $m=n \log n$, we expect (roughly) 1 empty bin.

Probability of a Bin containing k Balls

- There are $\binom{m}{k}$ ways of choose the balls (indexed by) $1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant m$ that fall in the bin
- The probability that these balls fall into the bin is $\frac{1}{n^{k}}$
- The probability that other balls fall outside is $\left(1-\frac{1}{n}\right)^{m-k}$
- Let $\mathbb{X}_{i,=k}$ represent the indicator variable that bin i contains exactly k balls
- Note that, we have

$$
\begin{equation*}
\mathbb{P}\left[\mathbb{X}_{i,=k}\right]=\binom{m}{k} \frac{1}{n^{k}}\left(1-\frac{1}{n}\right)^{m-k} \tag{1}
\end{equation*}
$$

Max Load

- Let \mathbb{L}_{i} represent the load of the i-th bin, i.e., the number of balls in the i-th bin
- Note that \mathbb{L}_{i} is the random variable $\left|\left\{k: \mathbb{T}_{k}=i\right\}\right|$
- Let \mathbb{M} be the maximum load of the bins
- That is, \mathbb{M} is the random variable $\max \left\{\mathbb{L}_{1}, \ldots, \mathbb{L}_{n}\right\}$
- We are interested in understanding how $\mathbb{E}[\mathbb{M}]$ behaves like

Theorem (Max Load)

For $m=n$, we have

$$
\mathbb{E}[\mathbb{M}]=\Theta\left(\frac{\log n}{\log \log n}\right)
$$

Analysis of Max Load (Upper Bound)

- First, we want to show that \mathbb{M} is $\leqslant c \frac{\log n}{\log \log n}$ with ≈ 1 probability
- This will imply that $\mathbb{E}[\mathbb{M}]$ is upper bounded by (roughly) $c^{\frac{\log n}{\log \log n}}$
- This is known as the "First Moment Technique"
- Let $\mathbb{X}_{i, \geqslant k}$ be the indicator variable for bin i getting $\geqslant k$ balls
- Note that

$$
\mathbb{P}\left[\mathbb{X}_{i, \geq k}=1\right] \leqslant\binom{ m}{k} \frac{1}{n^{k}}
$$

- Think: Why is this true?
- We will upper bound this probability further

$$
\mathbb{P}\left[\mathbb{X}_{i, \geqslant k}=1\right] \leqslant\binom{ m}{k} \frac{1}{n^{k}} \leqslant\left(\frac{m}{n}\right)^{k} \frac{1}{k!}
$$

- By union bound:

$$
\mathbb{P}\left[\exists i \in[n]: \mathbb{X}_{i, \geqslant k}=1\right] \leqslant\left(\frac{m}{n}\right)^{k} \frac{n}{k!}
$$

- Let $k=k^{*}=c \frac{\log n}{\log \log n}$ such that $k!\geqslant n^{2}$ and $m=n$
- We get

$$
\mathbb{P}\left[\exists i \in[n]: \mathbb{X}_{i, \geqslant k^{*}}=1\right] \leqslant \frac{1}{n}
$$

- Negating, we get:

$$
\mathbb{P}\left[\forall i \in[n]: \mathbb{X}_{i, \geqslant k^{*}}=0\right] \geqslant 1-\frac{1}{n}
$$

- Note that the event " $\forall i \in[n]: \mathbb{X}_{i, \geqslant k^{*}}=0$ " implies the event " $\mathbb{M}<k^{*}$ "
- So, we have $\mathbb{P}\left[\mathbb{M}<k^{*}\right] \geqslant 1-\frac{1}{n}$
- This implies that $\mathbb{E}[\mathbb{M}] \leqslant\left(1-\frac{1}{n}\right)\left(k^{*}-1\right)+\frac{1}{n} \cdot n \leqslant k^{*}$

Analysis of Max Load (Lower Bound)

- We are interested in showing that

$$
\mathbb{E}[\mathbb{M}] \geqslant d \frac{\log n}{\log \log n}
$$

- There are multiple ways to show this. In particular, we can use a "Second Moment Technique" to prove this result. One of the reading materials proves the result using this technique. We will, instead, use a more general technique that shows a close connection between the balls-and-bins problem and its approximation using independent Poisson Distributions

Rough Probability Calculation

Recall Equation 1. The probability of a bin to have k balls is

$$
\begin{aligned}
\mathbb{P}\left[\mathbb{X}_{i,=k}\right] & =\binom{m}{k} \frac{1}{n^{k}}\left(1-\frac{1}{n}\right)^{m-k} \\
& =\binom{m}{k}\left(\frac{1}{n\left(1-\frac{1}{n}\right)}\right)^{k}\left(1-\frac{1}{n}\right)^{m} \\
& \approx \frac{1}{k!}\left(\frac{m}{n-1}\right)^{k}\left(1-\frac{1}{n}\right)^{m} \\
& \approx \exp (-m / n) \cdot \frac{(m / n)^{k}}{k!}
\end{aligned}
$$

- Let \mathbb{Y} be the distribution over the sample space $\{0,1,2, \ldots\}$ such that

$$
\mathbb{P}[\mathbb{Y}=k]=\exp (-\mu) \frac{\mu^{k}}{k!}
$$

- Prove: This is a probability distribution with mean μ
- This distribution is the Poisson Distribution with mean μ

Intuition of the Approximation

- Reality: The load distribution of n bins when m balls are thrown is represented by the joint random variables $\left(\mathbb{L}_{1}, \ldots, \mathbb{L}_{n}\right)$
- Approximation: Consider the distribution $\left(\mathbb{Y}^{(1)}, \ldots, \mathbb{Y}^{(n)}\right)$, where each $\mathbb{Y}^{(i)}$ is an independent Poisson distribution with mean m / n

Theorem (Intuitive: Poisson Approximation)

If f is a "well-behaved" function, then

$$
\mathbb{E}\left[f\left(\mathbb{L}_{1}, \ldots, \mathbb{L}_{n}\right)\right] \lesssim \mathbb{E}\left[f\left(\mathbb{Y}^{(1)}, \ldots, \mathbb{Y}^{(n)}\right)\right]
$$

Example: We want to show that the max-load is $\geqslant d \frac{\log n}{\log \log n}$ with high probability. So, we choose f as the indicator variable for the event that the maximum of the inputs is $<d \frac{\log n}{\log \log n}$. Then we show that the $\mathbb{E}\left[f\left(\mathbb{Y}^{(1)}, \ldots, \mathbb{Y}^{(n)}\right)\right]$ is "small." So, we have $\mathbb{E}\left[f\left(\mathbb{L}_{1}, \ldots, \mathbb{L}_{n}\right)\right]$ is also "small."

Coupon Collector's Problem

Think:

- How many balls need to be thrown so that every bin has at least one ball?
- How many balls need to be thrown so that every bin has at least r balls?

