Lecture 02: Mathematical Basics (Inequalities)

Arithmetic Mean - Geometric Mean Inequality

Theorem (Basic AM-GM)

For $a, b>0$, we have

$$
\frac{a+b}{2} \geqslant \sqrt{a b}
$$

And equality holds if and only if $a=b$.

Proof.

$$
\frac{a+b}{2} \geqslant \sqrt{a b} \Longleftrightarrow(\sqrt{a}-\sqrt{b})^{2} \geqslant 0
$$

The second statement is true for all reals. And, equality holds if and only if $a=b$.

Geometric Mean - Harmonic Mean Inequality

Theorem (Basic GM-HM)

For $a, b>0$, we have

$$
\sqrt{a b} \geqslant\left(\frac{\frac{1}{a}+\frac{1}{b}}{2}\right)^{-1}
$$

And equality holds if and only if $a=b$.
Think: Proof? (it is a consequence of the Basic AM-GM Inequality)

- First step is to note that

$$
\frac{\sum_{i=1}^{n} a_{i}}{n} \geqslant\left(\prod_{i=1}^{n} a_{i}\right)^{1 / n}
$$

This can be proven by induction on n and using the Basic AM-GM

Generalizing AM-GM Inequality

Theorem ((Slight) Generalization of AM-GM)

For $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{Q}^{+}$such that $\sum_{i=1}^{n} \alpha_{i}=1$ and $a_{1}, \ldots, a_{n} \geqslant 0$, we have

$$
\sum_{i=1}^{n} \alpha_{i} a_{i} \geqslant \prod_{i=1}^{n} a_{i}^{\alpha_{i}}
$$

And, equality holds if and only if $a_{1}=\cdots=a_{n}$.
Think: Prove using Basic AM-GM. Let $\alpha_{i}=p_{i} / q_{i}$ where p_{i} and q_{i} are relatively prime integers. Let N be the L.C.M. of $\left\{q_{1}, \ldots, q_{n}\right\}$ Consider $\left(p_{i} / q_{i}\right) N$ copies of a_{i}, for $i \in[n]$ and apply AM-GM on the N numbers
Think: Generalize GM-HM analogously
Further Generalization: Generalization to $\alpha_{i} \in \mathbb{R}$ will be done later

Jensen's Inequality

Theorem (Jensen's Inequality)

Let f be a convex downward function in the range R. Let \mathbb{X} be a probability distribution over $x_{1}, \ldots, x_{n} \in R$. We have

$$
\mathbb{E}[f(\mathbb{X})] \geqslant f(\mathbb{E}[\mathbb{X}])
$$

Equality holds if and only if all x_{i} are identical for i such that $\mathbb{P}[\mathbf{X}=i]>0$.

Clarification: "Convex Downward" function is a function that looks like the function $f(x)=x^{2}$ and does not look like the function $f(x)=\sqrt{x}$
Proof Intuition: Use induction on n. Base case of $n=2$ is proven using: "the chord between two points lies above the function between the two points."
Think: Analogous statement for convex upwards function

Jensen's Inequality says that $\frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2}$ is higher than $f\left(\frac{1}{2} x_{1}+\frac{1}{2} x_{2}\right)$

Application: AM-GM from Jensen's Inequality

- Let $f(x)=\log x$, for $x>0$
- Note that $f(x)$ is "convex upwards" (i.e., it looks like \sqrt{x})
- Let \mathbb{X} be the random variable over [n] that outputs i with probability α_{i}
- Let $x_{i}=a_{i}$ for $i \in[n]$
- By Jensen's Inequality we have $\mathbb{E}[f(\mathbb{X})] \leqslant f(\mathbb{E}[\mathbb{X}])$
- This equivalent to

$$
\sum_{i \in[n]} \alpha_{i} \log x_{i} \leqslant \log \left(\sum_{i \in[n]} \alpha_{i} x_{i}\right)
$$

- Exponentiating both sides, we get the AM-GM inequality: $\prod_{i \in[n]} x_{i}^{\alpha_{i}} \leqslant \sum_{i \in[n]} \alpha_{i} x_{i}$

Generalized AM-GM

Theorem (Generalized AM-GM)

For $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}^{+}$such that $\sum_{i=1}^{n} \alpha_{i}=1$ and $a_{1}, \ldots, a_{n} \geqslant 0$, we have

$$
\sum_{i=1}^{n} \alpha_{i} a_{i} \geqslant \prod_{i=1}^{n} a_{i}^{\alpha_{i}}
$$

And, equality holds if and only if $a_{1}=\cdots=a_{n}$.

Cauchy-Schwarz Inequality

Theorem (Cauchy-Schwarz Inequality)

Let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \geqslant 0$. Then the following holds

$$
\sum_{i=1}^{n} a_{i} b_{i} \leqslant\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} b_{i}^{2}\right)^{1 / 2}
$$

Equality holds if and only if a_{i} / b_{i} is a constant for all $i \in[n]$.
Proof Outline:

- Prove the theorem for $n=2$ using AM-GM inequality
- Prove for $n>2$ using induction

Hölder's inequality

Theorem (Hölder's inequality)

Let $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \geqslant 0$. Let $p, q>0$ such that $\frac{1}{p}+\frac{1}{q}=1$. Then the following holds

$$
\sum_{i=1}^{n} a_{i} b_{i} \leqslant\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{1 / p}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{1 / q}
$$

Equality holds if and only if a_{i}^{p} / b_{i}^{q} is a constant for all $i \in[n]$.
Proof Outline:

- Assume the inequality holds for $n=2$
- Use induction to extend the inequality to extend to $n>2$

Base Case of $n=2$

In this section we prove the full Hölder's inequality in one-shot. The case of $n=2$ is just a restriction of the analysis below to $n=2$.

- Note that $p, q>0$ such that $\frac{1}{p}+\frac{1}{q}=1$ implies that $p, q>1$
- Consider the function $f(x)=x^{p}$
- For $p>1$, this function is convex downwards
- Let $x_{i}=a_{i} / b_{i}^{q / p}$
- Let $\alpha_{i}=\Lambda \cdot b_{i}^{1+\frac{q}{\rho}}$, where Λ is the normalizing constant such that $\sum_{i \in[n]} \alpha_{i}=1$
- By Jensen's Inequality on $f(x)=x^{p}$ we have:

$$
\sum_{i \in[n]} \alpha_{i} x_{i}^{p} \geqslant\left(\sum_{i \in[n]} \alpha_{i} x_{i}\right)^{p}
$$

Let be first find what is the value of Λ.

- $\sum_{k \in[n]} \alpha_{k}=\sum_{k \in[n]} \Lambda \cdot b_{k}^{1+\frac{q}{p}}=1$
- Note that $\frac{1}{p}+\frac{1}{q}=1$. Multiplying both sides by q, we get $\frac{q}{p}+1=q$
- Now, we can substitute $\frac{q}{p}+1=q$ to get

$$
\sum_{k \in[n]} \alpha_{k}=\Lambda \sum_{k \in[n]} b_{k}^{q}=1
$$

- This implies that

$$
\Lambda=1 / \sum_{k \in[n]} b_{k}^{q}
$$

Base Case of $n=2$

- Now, we can conclude that

$$
\begin{aligned}
\alpha_{i} x_{i} & =\frac{a_{i} b_{i}}{\sum_{k \in[n]} b_{k}^{q}}, \text { and } \\
\alpha_{i} x_{i}^{p} & =\Lambda \cdot b_{i}^{1+\frac{q}{p}} \cdot \frac{a_{i}^{p}}{b_{i}^{q}}=\frac{a_{i}^{p}}{\sum_{k \in[n]} b_{k}^{q}} \quad \text { Using the fact } \frac{q}{p}+1=q
\end{aligned}
$$

Now, let us substitute these values to simplify the equation we had obtained by applying the Jensen's Inequality.

$$
\begin{array}{r}
\sum_{i \in[n]} \alpha_{i} x_{i}^{p} \geqslant\left(\sum_{i \in[n]} \alpha_{i} x_{i}\right)^{p} \\
\Longleftrightarrow \quad \sum_{i \in[n]} \frac{a_{i}^{p}}{\sum_{k \in[n]} b_{k}^{q}} \geqslant\left(\sum_{i \in[n]} \frac{a_{i} b_{i}}{\sum_{k \in[n]} b_{k}^{q}}\right)^{p}
\end{array}
$$

We continue this simplification in the next page

Base Case of $n=2$

$$
\left.\begin{array}{c}
\sum_{i \in[n]} \frac{a_{i}^{p}}{\sum_{k \in[n]} b_{k}^{q}} \geqslant\left(\sum_{i \in[n]} \frac{a_{i} b_{i}}{\sum_{k \in[n]} b_{k}^{q}}\right)^{p} \\
\Longleftrightarrow\left(\frac{a_{i}^{p}}{\sum_{k \in[n]} b_{k}^{q}}\right)^{1 / p} \geqslant \sum_{i \in[n]} \frac{a_{i} b_{i}}{\sum_{k \in[n]} b_{k}^{q}} \\
\left(\sum_{k \in[n]} b_{i}^{q}\right)^{1-\frac{1}{p}}\left(\sum_{i \in[n]} a_{i}^{p}\right)^{1 / p} \geqslant \sum_{i \in[n]} a_{i} b_{i} \\
\left(\sum_{k \in[n]} b_{i}^{q}\right)^{1 / q}\left(\sum_{i \in[n]} a_{i}^{p}\right)^{1 / p} \geqslant \sum_{i \in[n]} a_{i} b_{i}
\end{array} \quad \because 1-\frac{1}{p}=\frac{1}{q}\right)
$$

This completes the proof of the Höder's Inequality

- Let f be an infinitely differentiable function
- $f^{(n)}(x)$ represents $\frac{\mathrm{d}^{n} f}{\mathrm{~d} x^{n}}(x)$. For $n=0, f^{(n)}(x)$ represents $f(x)$
- Taylor Series of f around x_{0} is given by

$$
f(x)=\sum_{n \geqslant 0} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

- Maclaurin Series of f is the Taylor series with $x_{0}=0$
- Define the truncation of the Taylor series of f up to N terms as follows

$$
T_{f, N, x_{0}}(x):=\sum_{n=0}^{N} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

- The remainder function is defined as follows

$$
R_{f, N, x_{0}}(x):=f(x)-T_{f, N, x_{0}}(x)
$$

Lagrange Form

Theorem (The Remainder Theorem)

Suppose f is $N+1$ differentiable function. There exists c between x_{0} and x such that

$$
R_{f, N, x_{0}}=\frac{f^{(N+1)}(c)}{(N+1)!}\left(x-x_{0}\right)^{N+1}
$$

This theorem bounds the error between $f(x)$ and the truncation $T_{f, N, x_{0}}(x)$

Application: Bounding $\exp (-x)$

- Let $f(x)=\exp (-x)$
- Note that $f^{(n)}(x)=(-1)^{n} \exp (-x)$
- Note that the Taylor series of $f(x)$ is

$$
f(x)=\exp (-x)=1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\cdots
$$

- Note that $T_{f, 1,0}(x)=1-x$ and $T_{f, 2,0}=1-x+\frac{x^{2}}{2}$
- By applying the remainder theorem, we get

$$
\begin{gathered}
\exp (-x)-(1-x)=R_{f, 1,0}=\frac{\exp (-c)}{2!} x^{2} \geqslant 0 \\
\exp (-x)-\left(1-x+\frac{x^{2}}{2}\right)=R_{f, 2,0}=\frac{-\exp \left(-c^{\prime}\right)}{3!} x^{3} \leqslant 0
\end{gathered}
$$

- This implies that $1-x \leqslant \exp (-x) \leqslant 1-x+x^{2} / 2$

