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Functions

We will deal with functions f : {0, 1}n → R
Function f can be represented by a vector:

(f (0), f (1), . . . , f (N − 1)) ,

where N = 2n − 1
Any vector in RN can be interpreted as a function

Definition (Inner Product)

Inner product of two functions f , g : {0, 1}n → R is defined to be:

〈f , g〉 := E
x∼Un

[f (x)g(x)] =
1
N

N−1∑
x=0

f (x)g(x)
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Characters

Definition
For a subset S ⊆ [n], we define the character function
χS : {0, 1}n → R as follows:

χS(x) = (−1)S ·x

We identify S with its characteristic vector ∈ {0, 1}n

There are N such functions
These N functions form an alternate basis to to express the
space of all functions
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Useful Observation

Lemma
For A ⊆ [n], we have:

∑
x∈{0,1}n

(−1)A·x =

{
N, if A = ∅
0, otherwise.

If A = ∅, then
∑

x∈{0,1}n(−1)A·x =
∑

x∈{0,1}n(−1)0 = N

If A 6= ∅, then assume that t ∈ A and A′ = A \ {t}∑
x∈{0,1}n

(−1)A·x =
∑

x1∈{0,1}

· · ·
∑

xn∈{0,1}

(−1)A·x

=
∑

x[n]\{t}∈{0,1}n−1

∑
xt∈{0,1}

(−1)A·x

=
∑

x[n]\{t}∈{0,1}n−1

(−1)A
′·x[n]\{t}

∑
xt∈{0,1}

(−1)xt
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Proof continued

Note that
∑

xt∈{0,1}(−1)xt = 0
So, we get∑

x∈{0,1}n
(−1)A·x =

∑
x[n]\{t}∈{0,1}n−1

(−1)A
′·x[n]\{t} · 0 = 0
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Orthonormal Basis

Lemma
{χS : S ⊆ [n]} is an orthonormal basis. In particular:

〈χS , χT 〉 =

{
1, if S = T

0, otherwise.

Note that:

〈χS , χT 〉 =
1
N

∑
x∈{0,1}n

(−1)S ·x ·(−1)T ·x =
1
N

∑
x∈{0,1}n

(−1)(S∆T )·x

S∆T = ∅ if and only if S = T

Using previous lemma, we get this result
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Fourier Transform

Definition
Fourier Transform Given f : {0, 1}n → R, we define the following
function:

f̂ =
(
f̂ (S = 0), f̂ (S = 1), . . . , f̂ (S = N − 1)

)
,

where, for S ⊆ [n], we define:

f̂ (S) = 〈f , χS〉

Note that f̂ (S) = 1
N

∑
x∈{0,1}n f (x)χS(x)

The Fourier transform F is a mapping that maps f to f̂

And, we have f =
∑

S⊆[n] f̂ (S)χS
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Linear & Bijective Map

Lemma

f 7→F f̂ is a linear bijective map.

Consider the matrix M ∈ RN×N such that Mi ,j = 1
Nχj(i)

Note that f̂ (j) =
∑

i∈{0,1}n f (i) · 1
Nχj(i) =

∑
i∈{0,1}n f (i) ·Mi ,j

Therefore, f ·M = f̂

This establishes that F is a linear map
Note that M is a symmetric matrix and M · (N ·M) = IN×N
(by orthonormality of the Fourier Basis)
This establishes that F has an inverse and, hence, is a bijection
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Properties and Examples

(̂cf ) = cf̂ (Follows from Linearity of F)(̂
f̂
)

= 1
N f (Follows from the fact that M ·M = N · IN×N)

Think: If f (x) = g(x − c) then what is the relation between f̂
and ĝ?

Let f (x) = 1, for all x , then f̂ (S) =

{
1, if S = ∅
0, otherwise.

Let f = Un, then f̂ (S) =

{
1/N, if S = ∅
0, otherwise.

Let f = δ0, then f̂ (S) = Un (By linearity of F and the fact
that F is its own (scaled) inverse)
For any probability distribution f , we have f̂ (∅) = 1

N
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Example

Lemma
Let V ⊆ {0, 1}n be a vector space of dimension t. Let
V⊥ ⊆ {0, 1}n be the orthogonal vector space of dimension (n − t).
Let f = UV , that is f is a uniform distribution over V and 0

everywhere else. Then f̂ (S) =

{
1
N , if S ∈ V⊥

0, otherwise.
.

Think about a proof.
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Properties: Inner-product of Functions

Lemma

〈f , g〉 =
∑
S⊆[n]

f̂ (S)ĝ(S)

f =
∑

S f̂ (S)χS and g =
∑

T ĝ(T )χT

So, we have:

〈f , g〉 = E
x∼Un

[f (x) · g(x)]

= E
x∼Un

∑
S⊆[n]

f̂ (S)χS(x)

 ·
∑

T⊆[n]

ĝ(T )χT (x)


=
∑
S⊆[n]

∑
T⊆[n]

f̂ (S)ĝ(T ) E
x∼Un

[χS(x) · χT (x)]

=
∑
S⊆[n]

∑
T⊆[n]

f̂ (S)ĝ(T )1(S = T ) =
∑
S⊆[n]

f̂ (S)ĝ(S)
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Parseval’s Identity

We define ‖f ‖2 =
√
〈f , f 〉

Lemma (Parseval’s Identity)

‖f ‖22 =
∑
S⊆[n]

f̂ (S)2

Follows from the inner product of two functions
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Statistical Distance from Uniform

Lemma

SD (f ,Un) =
N

2

∑
S 6=∅

f̂ (S)2

1/2

2SD (f ,Un) =
∑

x∈{0,1}n
|f (x)− Un(x)| =

∑
x∈{0,1}n

|(f − Un)(x)|

6 N ‖f − Un‖2 , By Chauchy-Schwartz

= N

(∑
S

̂(f − Un)(S)2

)1/2

= N

(∑
S

(
f̂ (S)− Ûn(S)

)2
)1/2

= N

(f̂ (∅)− Ûn(∅)
)2

+
∑
S 6=∅

(
f̂ (S)− Ûn(S)

)2

1/2

= N

∑
S 6=∅

f̂ (S)2

1/2
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Bias

Let f1 : {0, 1} → [0, 1] be a probability distribution over one-bit
bias(f1) = 2SD (f1,U1)

Equivalently: f1 has bias α if and only if
f1(b) ∈

{1
2 −

α
2 ,

1
2 + α

2

}
, for b ∈ {0, 1}

Definition (Bias)

Let f be a probability distribution over {0, 1}n and S ⊆ [n]. Let fS
be a distribution over {0, 1} that outputs ⊕i∈Sxi , when x ∼ f . We
define biasS(f ) = bias(fS).

Think: biasS(f ) = N
∣∣∣f̂ (S)

∣∣∣
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