Lecture 16: Introduction to Error-correcting Codes
Definition (Hamming Distance)

The Hamming distance between two strings \(x, y \in \Sigma^n \), denoted by \(\Delta(x, y) \), is the number of positions \(i \in [n] \) such that \(x_i \neq y_i \).

Relative Hamming distance between \(x, y \) is represented by \(\delta(x, y) := \Delta(x, y)/n \).

Definition (Hamming Weight)

The Hamming weight of a strings \(x \in \Sigma^n \), denoted by \(\text{wt}(x) \), is the number of non-zero symbols in \(x \).

- Note that \(\Delta(x, y) = \text{wt}(x - y) \)
- Hamming ball of radius \(r \) around \(x \) is the set \(\{ y : y \in \Sigma^n, \Delta(x, y) \leq r \} \)
Definition (Error-correcting Code)

An error-correcting code C is a subset of Σ^n

- If $|\Sigma| = q$, then the code C is called q-ary code
- The block-size of code C is n
- Encoding map is a mapping of the set of messages \mathcal{M} to C
The rate of a code is defined:

\[R(C) := \frac{\log |C|}{n \log |\Sigma|} \]

The dimension of a code is defined to be \(\log |C| / \log |\Sigma| \).
The distance of a code C is:

$$\Delta(C) := \min_{c_1, c_2 \in C \atop c_1 \neq c_2} \Delta(c_1, c_2)$$

The relative distance of a code is $\delta(C) = \Delta(C)/n$.
Examples

- Repetition code repeats every input bit t times. It has block-size n, dimension n/t and distance t.
- Parity-check code appends the parity of $(n - 1)$ bits at the end. It has block-size n, dimension $(n - 1)$ and distance 2.
- Hamming code encodes 4 bits (x_1, x_2, x_3, x_4) as $(x_1, x_2, x_3, x_4, a, b, c)$, where $a = x_2 + x_3 + x_4$, $b = x_1 + x_3 + x_4$ and $c = x_1 + x_2 + x_4$. It has block-size 7, dimension 4 and distance 3.
The following statements are equivalent:

- C has minimum distance $2t + 1$
- C can detect $2t$ symbol erasures
- C can correct $2t$ symbol erasures
- C can correct t symbol errors
Linear Codes

Definition (Linear Code)
If Σ is a field and $C \subseteq \Sigma^n$ is a subspace of Σ^n then C is a linear code

- If C has dimension k, then there exists codewords $\{c_1, \ldots, c_k\} \subseteq C$ such that any codeword $c \in C$ can be written as linear combination of $\{c_1, \ldots, c_k\}$
- Every codeword can be written as $x \cdot G$, where $x = (x_1, \ldots, x_k) \in \Sigma^k$ and $G = \begin{pmatrix} c_1 \\ \vdots \\ c_k \end{pmatrix} \in \Sigma^{k \times n}$
- G is called the generator matrix of C
- The mapping $x \mapsto xG$ is an encoding map
- A q-ary binary linear code with block length n, with dimension k and distance d is represented by $[n, k, d]_q$
Examples

- Parity-check code is an \([n, n-1, 2]_2\) code
- Repetition code is an \([n, n/t, t]_2\) code
- Hamming code is an \([7, 4, 3]_2\) code

Think: Their generator matrix?

Definition (Systematic Form)

If \(G \equiv [I|G']\), \(G\) is said to be in the systematic form
Lemma

\(C \) is an \([n, k]_q\) code if and only if there exists a matrix
\(H \in \mathbb{F}_q^{(n-k) \times n} \) of full row rank such that

\[
C = \{ c : c \in \mathbb{F}_q^n, Hc = 0 \}
\]

- \(H \) is called the parity check matrix for \(C \)

Lemma

\(\Delta(C) \) equals the minimum number of columns of \(H \) that are linearly dependent.

Lemma

If \(G = [I | G'] \) is in systematic form, then \(H = [G'^T | I] \) is the parity check matrix.
Example

For Hamming code, we have

\[
G = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{pmatrix}
\]

\[
H = \begin{pmatrix}
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{pmatrix}
\]

- \(H \) has all non-zero binary strings of length 3 as its columns
Correcting One Error with Hamming code

- Let c be the transmitted codeword
- Let e_i be the error introduced
- Received codeword is $\tilde{c} = c + e_i$
- Note that $H\tilde{c} = Hc + He_i = H_i$
- So, we can find the position where error has occurred and it can be removed

Definition (Syndrome)

Hy is the syndrome of y
Let $H \in \mathbb{F}_q^{r \times (2^r - 1)}$ such that the i-th column is the binary representation of i, for $i \in [2^r - 1]$

Define C using the parity check matrix

Lemma

C is an $[2^r - 1, 2^r - r - 1, 3]$ code