
Lecture 14: One-way Functions

OWF

Objective

In this lecture, we shall introduce the notion of one-way
functions,
We shall consider the construction of one-way functions based
on the assumption that factorization of the product of two
large primes is difficult,
Furthermore, we shall also consider one-way function
construction based on other assumptions like hardness of
discrete logarithm, finding square root, and elliptic curve
cryptography,
Finally, we shall also learn about hardness amplification of
“weak” one-way functions into one-way functions.

OWF

Intuition:One-way Functions

Intuition: OWF
A function f : {0, 1}n → {0, 1}n is a one-way function if

1 The function f is easy to evaluate and
2 The function f is difficult is hard to invert

We believe certain functions are one-way functions
If P = NP, then one-way functions cannot exist (see
appendix). So, proving that a particular function f is a
one-way function will demonstrate that P ̸= NP, which we
believe is a very difficult problem to resolve
So, based on our current knowledge of mathematics, we have
invested faith in believing that a few specially designed
functions are one-way functions

OWF

Hardness of Inverting a Function I

Suppose f : D → R be a function, where D is the domain and
R is the range of the function f

We consider the game between an honest challenger and an
adversary

The honest challenger samples x
$← D and computer z = f (x).

The honest challenger presents the challenge z ∈ R to the
adversary.
The adversary on input z ∈ R, outputs x ′ ∈ D
The adversary wins the game if f (x ′) = z

Note that we do not insist on finding x ′ = x . The adversary
wins if she finds any preimage of z , that is, any x ′ ∈ D such
that f (x ′) = z The preimage chosen by the adversary need not
be exactly the same as the preimage chosen by the honest
challenger.

OWF

Hardness of Inverting a Function II

Note that if an adversary has unbounded computational power,
she can evaluate f for every entry in D and check which one
of them gives z . So, it is necessary to restrict the adversary to
being computationally bounded or an efficient algorithm.

The probability that an adversary A wins in the game against
the honest challenger H is succinctly expressed below

P
[
f (x ′) = z : x

$← D, z = f (x), x ′ = A(z)
]
⩽ small

The function f is said to be one-way if for any computationally
bounded adversary A the probability above is “small”

In this lecture, we shall see how we can use “hardness of
factorization” to construct a one-way function

OWF

Hardness of Inverting a Function III

Think: Why did we not insist on x ′ = x for successful
inversion of the function f ?

OWF

Hardness of Factorization I

Let Pn represent the set of prime numbers in the set
[2n−1, 2n − 1]. That is, Pn consists of prime numbers that
need exactly n bits in their binary representation.

Let us consider the function f : Pn ×Pn → {0, 1}2n defined by
f (x , y) = x · y , where · represents the integer multiplication of
the prime numbers x , y ∈ Pn
The hardness of factorization assumption says that f is a
one-way function
Remarks.

Given z , an adversary can win by either presenting (p, q) or
(q, p) such that p · q = z .
Note that we are not saying whether it is easy or difficult to
factorize other composite numbers. We are only saying that
“factorizing numbers that are the product of two large prime
numbers” is difficult

OWF

Hardness of Factorization II

In this course, we shall represent this by saying that, for all
computationally bounded adversary A, we have

P
[
p′ · q′ = z : (p, q)

$←Pn × Pn, z = p · q, (p′, q′) = A(z)
]
≈ 0

In a more advanced course, we shall say that the probability of
successfully inverting is negligible in n and define “negligible
functions” formally. For this course, we shall use ≈ 0 notation.

OWF

Another One-way Function I

Suppose we define g : {0, 1}n × {0, 1}n → {0, 1}2n by
g(x , y) = x · y .

Think: Why isn’t g a one-way function?

However, we shall prove that g is a weak form of one-way
function. Suppose (x , y) ∈ Pn × Pn, then we know that g is
hard to invert. The probability that (x , y) ∈ Pn × Pn is
presented below

P
[
(x , y) ∈ Pn × Pn

]
=
|Pn|
2n
× |Pn|

2n

≈

(
2n−1/n

2n

)2

=
1

4n2

OWF

Another One-way Function II

So, basically, we conclude the following
In 1− 1

4n2 fraction of the inputs, we do not have any assurance
about how hard it is to invert the function g
In 1

4n2 fraction of the inputs, the function g is hard to invert
(based on the hardness of factorization).

We want to claim the following

Claim

P [A factorizes z] ≲ 1− 1
4n2

We proceed as follows

P [A factorizes z] = P
[
A factorizes z , (x , y) ̸∈ Pn × Pn

]
+ P

[
A factorizes z , (x , y) ∈ Pn × Pn

]
OWF

Another One-way Function III

We bound each of these two terms separately

P
[
A factorizes z , (x , y) ̸∈ Pn × Pn

]
=P
[
A factorizes z |(x , y) ̸∈ Pn × Pn

]
P
[
(x , y) ̸∈ Pn × Pn

]
⩽1 ·

(
1− 1

4n2

)
= 1− 1

4n2

The other term is

P
[
A factorizes z , (x , y) ∈ Pn × Pn

]
=P
[
A factorizes z |(x , y) ∈ Pn × Pn

]
P
[
(x , y) ∈ Pn × Pn

]
≲0 · 1

4n2 = 0

So, overall, we get

P [A factorizes z] ≲

(
1− 1

4n2

)
+ 0 = 1− 1

4n2

OWF

Another One-way Function IV

Intuitive Conclusion: If there is a “dense” set of inputs for
which the function g is hard to invert, then the function g is
“slightly” hard to invert on average!

The next question is: Can we “amplify this nugget of hardness”
in the function g to get a one-way function?

OWF

Hardness Amplification I

Suppose g (k) :
(
{0, 1}n × {0, 1}n

)k → (
{0, 1}2n

)k
defined as

follows

g (k)(x1, y1, x2, y2, . . . , xk , yk) = (x1 · y1, x2 · y2, . . . , xk · yk)

Note that an adversary who inverts g (k) factorizes every
zi = xi · yi , where 1 ⩽ i ⩽ n

From the previous claim, we have, for all 1 ⩽ i ⩽ k

P [A factorizes zi] ≲ 1− 1
4n2

So, the probability that A inverts all zi , where 1 ⩽ i ⩽ k , is

P [A factorizes z1, . . . , zk] ≲

(
1− 1

4n2

)k

⩽ exp(−k/4n2)

Note that is we use k = 4n2t, then the probability that any
efficient adversary A inverts g (k) is ≲ exp(−t)

OWF

Second Candidate: Discrete Log is Hard

Let (G ,×) be a group and g be a generator. That is,
G = {g0, g1, g2, . . . , gK−1}, where K = |G |
Let f : {0, . . . ,K − 1} → G be defined as follows

f (x) = g x

Think: Why is this function efficient to evaluate?
It is believed that there exists group G where f is hard to
invert
Clarification: We are not saying that f is hard to invert in any
group G . There are special groups G where f is believed to be
hard to invert
Note that the inversion problem asks you to find the
“logarithm,” given y , find x such that g x = y . This is known
as the discrete logarithm problem

OWF

Third Candidate: Finding Square-root is Hard

Let p and q be n-bit prime numbers
Let N = pq

Rabin’s function is defined as follows

f (x) = x2 mod N

Think: Why is this function efficient to evaluate?
It is believed that finding square-roots mod N is hard when N
is the product of two large primes
Think: How can you invert Rabin’s function if you know the
factorization of N? That is, given p and q, how can you
efficiently compute x ′ such that (x ′)2 mod N = y , where
y = x2 mod N.
(Hint: First, give an efficient algorithm for square root over
prime-order fields. Then use Chinese remainder theorem.)

OWF

Fourth Candidate: Elliptic Curves

Elliptic curves are sets of pairs of elements x , y in a field that
satisfy the equation y = x3 + ax + b, for some suitably chosen
values of a, b
There is a definition of “point addition” over an elliptic curve,
i.e., given two points P and Q on the curve, we can suitably
define a point P + Q on the curve
Given a point P on the elliptic curve, we can add

x-times︷ ︸︸ ︷
P + P +· · ·+ P and represent the resulting point as xP

Then the following function is believed to be one-way for
suitable elliptic curves

f (x ,P) = (P, xP)

Think: Can you connect this assumption to the discrete log
problem?

OWF

One-way Permutations

Definition
A function f : {0, 1}n → {0, 1}n is a one-way permutation if it is a
one-way function and the function f is a bijection

We introduce this primitive because the construction of
pseudorandom generators from one-way permutations is
significantly more intuitive than the construction of pseudorandom
generators from OWF

OWF

Appendix: Efficient Inversion of Efficiently Computable
Functions I

We shall show the following result

Theorem
Let f : {0, 1}n → {0, 1}n be a function that can be efficiently
computed. If P = NP then there exists an efficient algorithm to
find an inverse x ′ of y , where y = f (x) for some x ∈ {0, 1}n

OWF

Appendix: Efficient Inversion of Efficiently Computable
Functions II

Before we begin the proof of the theorem, let me emphasize that
there is always an inefficient algorithm to find x ′, an inverse of y

Invert-Ineffcient (y):
1 For x ′ ∈ {0, 1}n : If f (x ′) == y , then return x ′

2 Return −1

This is an inefficient algorithm to compute an inverse of y = f (x)

OWF

Appendix: Efficient Inversion of Efficiently Computable
Functions III

Let us prove the theorem now. First, let us introduce a few
notations.

Recall f : {0, 1}n → {0, 1}n is the function

Let φ(x) be a 3-SAT formula that tests whether f (x) = y or
not. That is, φ(x) evaluates to true if and only if f (x) = y .

If f can be evaluated in polynomial time, then the size of φ(x)
is polynomial in n

If P = NP then we can efficiently determine: Is φ(x)
satisfiable or not

OWF

Appendix: Efficient Inversion of Efficiently Computable
Functions IV

Let us introduce the notion of a partial assignment of variables
{x1, x2, . . . , xn}

Consider the following example.

φ(x) = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)

The formula “φ(x) under the restriction xi 7→ b,” is obtained
by substituting b as the value of xi in the formula φ(x) and
simplifying. For example, “φ(x) under the restriction x1 7→ 0”
is the following formula

φ(x)|x1 7→0 = (0 ∨ x2 ∨ ¬x3) ∧ (¬0 ∨ x2 ∨ x3)

= (0 ∨ x2 ∨ ¬x3) ∧ (1 ∨ x2 ∨ x3)

= (x2 ∨ ¬x3)

OWF

Appendix: Efficient Inversion of Efficiently Computable
Functions V

Given a set of partial assignments
assign = {xi1 7→ b1, xi2 7→ b2, . . . , xik 7→ bk}, we define
φ(x)|assign by setting the values of xi1 , . . . , xik as b1, . . . , bk in
φ(x) and simplifying

Again, if P = NP and f is efficiently computable, then it is
efficient to find whether φ(x)|assign is satisfiable or not

OWF

Appendix: Efficient Inversion of Efficiently Computable
Functions VI

Now consider the following algorithm. We will construct a solution
x1x2 . . . xn such that f (x1x2 . . . xn) = y one bit at a time.

Find_Inverse(y):
1 Let φ(x) be the 3-SAT formula mentioned above
2 If φ(x) is not satisfiable, then return -1
3 assign = ∅
4 For i = 1 to n:

1 result = Test whether “φ(x)|assign∪{xi 7→0}” is satisfiable or not
2 If result == true: assign = assign ∪ {xi 7→ 0}
3 Else: assign = assign ∪ {xi 7→ 1}

5 Return assign

Note that this is an efficient algorithm to compute an inverse of y
if f can be computed efficiently and P = NP

OWF

Appendix: Defining Addition on Elliptic Curves
Consider the field (R,+,×)

Let us consider the plot of the curve y2 = x3 + ax + b (in this example, we have a = −2 and
b = 4)
Given two points P and Q on the curve, draw the line through them and find R′, the third
intersection point of the line with the curve
Reflect R′ on the X -axis to obtain the point R

We define the point R as the sum P + Q

−3 −2 −1 0 1 2 3 4

−5

0

5

P

Q

R′

R

OWF

