
Lecture 12: Generating Large Primes

Generating Primes



Generating n-bit Primes I

Let us begin by constructing an algorithm that outputs n-bit
prime numbers IF we can efficiently test whether a number is
a prime or not

We shall assume that Is_Prime(X ) returns true if and only if
X is prime number; otherwise, it returns false.

Idea of the Algorithm. We will pick a random number X in
the range

[
2n−1, 2n − 1

]
and test whether X is a prime

number or not. If X is a prime number, then we are done.
Otherwise, we repeat.

Consider the code for this algorithm

Generate_Prime(n) :
1 While (true):

1 X
$←
[
2n−1, 2n − 1

]
2 If Is_Prime(X ) then return X

Generating Primes



Generating n-bit Primes II

To understand the running time of this algorithm, we will have
to understand the distribution of the primes. In particular, how
densely are prime numbers distributed over natural numbers?
Towards this, we shall use the following theorem without proof.

Theorem (Prime Number Theorem)

The total number of primes < N is (roughly) PN = N/ logN.

So, the number of primes in the range
[
2n−1, 2n − 1

]
is

P2n − P2n−1 . Let us calculate this expression

P2n − P2n−1 =
2n

n
− 2n−1

n − 1

= 2n−1
(

2
n
− 1

n − 1

)
≈ 2n−1 · 1

n

Generating Primes



Generating n-bit Primes III

Note that the total number of integers in the range[
2n−1, 2n − 1

]
is exactly 2n−1

First Conclusion. As we have seen above, among these 2n−1,
we have (roughly) 2n−1 · 1

n prime numbers. If we pick a
number at random from the range

[
2n−1, 2n − 1

]
, then the

probability that the number is a prime is

2n−1 · 1
n

2n−1 =
1
n

Intuitively, if we want to generate an n = 1000 bit prime
number, then the probability that a random number in the
range

[
299, 2100 − 1

]
is a prime number is (roughly) 1

n = 1
1000 .

Generating Primes



Generating n-bit Primes IV

Failing to generate a prime in t attempts. Note that the
probability that we fail to generate a prime number in one
iteration of the loop is given by(

1− 1
n

)
So, the probability of failing to generate a prime number in
two iterations of the loop is given by(

1− 1
n

)2

Similarly, the probability of failing to generate a prime number
in t iterations of the loop is given by(

1− 1
n

)t

Generating Primes



Generating n-bit Primes V

Recall from calculus classes. Consider f (x) =
(
1− 1

x

)x
.

We know that
lim
x→∞

f (x) =
1
e

If t = αn, then the probability that t iterations of the loop fail
to generate a prime is given by(

1− 1
n

)t

=

(
1− 1

n

)αn

≈ exp(−α)

Conclusion about the running time of the
Generate_Prime Algorithm. Now, we can conclude that the
algorithm runs the loop t-times and does not find a prime
number is at most exp(−t)

Generating Primes



Ideal Primality Testing I

Our objective is to construct the Is_Prime algorithm

Ideally, we would like the following input/output behavior from
the Is_Prime algorithm. In the following table, we write the
probability that the algorithm says true/false conditioned on
the fact that the input X is a prime or composite.

Is_Prime says true Is_prime says false
X is a prime 1 0

X is a composite 0 1

Read the table as follows. Conditioned on the fact that X is a
prime number, we want Is_Prime(X ) to return true with
probability 1. And, conditioned on the fact that X is a
composite number, we want Is_Prime(X ) to return false with
probability 1.

Generating Primes



Ideal Primality Testing II

This algorithm should run in time that is polynomial in
x = logX , the number of bits needed to represent the number
X

This ideal algorithm was discovered in 2002 by
Agrawal–Kayal–Saxena. In practice, this algorithm is not used
for primality testing because this turns out to be too slow.

In practice, we use a randomized algorithm, namely, the
Miller–Rabin Test, that successfully distinguishes primes from
composites with very high probability. In this lecture, we will
study a basic version of this Miller–Rabin primality test

Generating Primes



Miller–Rabin Primality Testing Algorithm

Suppose we implement the Is_Prime algorithm using the
Miller–Rabin Primality Testing Algorithm. This is a
randomized algorithm with a one-sided error. It takes as an
additional parameter t and assures the following

Is_Prime says true Is_prime says false
X is a prime 1 0

X is a composite ⩽ 2−t ⩾ 1− 2−t

When X is a prime number, the algorithm does not err!
However, when X is a composite number, the algorithm might
mistakenly declare it as a prime with probability 2−t . So, we
say that it has a one-sided error.
The running time of the algorithm is polynomial in x (the
number of bits needed to represent the number X ) and t

For example, we can test the primality of a 1000-bit prime
with confidence 1− 2−500 in running time that is polynomial
in x = 1000 and t = 500.

Generating Primes



Basic Miller–Rabin Test I

In this section, we aim to implement the Is_Prime test using
the basic Miller–Rabin test

The basic Rabin–Miller test that we shall learn in this class
NEARLY works. Except that for some VERY WEIRD inputs
X , it messes up badly. These very weird inputs are composite;
however, the basic Miller–Rabin algorithm returns true (i.e., it
mistakenly declares it as a prime number)

These VERY WEIRD composite numbers are called the
Carmichael numbers. There are infinitely many Carmichael
numbers. Otherwise, we could have tested if X belongs to this
finite set! However, the good news is that they are very sparse.
Erdös proved that the total number of Carmichael numbers
< N is given by

N

exp
(
nλ log log n

log n

) ,
Generating Primes



Basic Miller–Rabin Test II

where λ > 0 is a constant and n is the number of bits needed
to represent N. So, it is very unlikely that a random number
being tested for primality is, in fact, a Carmichael number.
The smallest Carmichael number is 561 = 3 · 11 · 17

What will Basic Rabin–Miller achieve? The guarantees are
summarized below.

Is_Prime says true Is_prime says false
X is a prime 1 0

X is Carmichael ≈ 1 ≈ 0
X is a composite ⩽ 2−t ⩾ 1− 2−t

but not Carmichael

Atomic Test. Consider the following loop

Generating Primes



Basic Miller–Rabin Test III

1 Pick α
$←{1, 2, . . . ,X − 1}

2 Compute β = αX−1 mod X

3 If (β == 1): Return pass

4 Else: Return fail

Recall that we have proven in the homework that αX−1 = 1
mod X for a prime X , for any integer X ∈ {1, 2, . . . ,X − 1}.
So, we can conclude the following.

Atomic Loop says pass Atomic Loop says fail
X is a prime 1 0

Even though they are composite numbers, Carmichael
numbers are such that for α ∈ {1, . . . ,X − 1} relatively prime
to X satisfies αX−1 = 1 mod X . Typically there are a lot of
numbers in {1, . . . ,X − 1} that are relatively prime to X . So,
we can conclude that

Generating Primes



Basic Miller–Rabin Test IV

Atomic Loop says pass Atomic Loop says fail
X is a prime 1 0

X is Carmichael ≈ 1 ≈ 0

When X is a composite number that is not a Carmichael
number, we shall use the following result without proof.

Lemma
Suppose X is a composite number that is not a Carmichael
number. Then, at least half of α ∈ {1, . . . ,X − 1} satisfy
αX−1 ̸= 1 mod X .

This result helps us conclude that the Atomic Loop will output
fail with probability ⩾ 1/2. So, we can fill the final row in the
table as

Generating Primes



Basic Miller–Rabin Test V

Atomic Loop says pass Atomic Loop says fail
X is a prime 1 0

X is Carmichael ≈ 1 ≈ 0
X is composite ⩽ 1/2 ⩾ 1/2

but not Carmichael

Using Atomic Loop to get the Basic Miller–Rabin Test.
Suppose X is not a Carmichael number but is composite. Note
that when we run the atomic loop once, the probability that
the algorithm mistakenly says pass is ⩽ 1/2. Similarly, when
we run the atomic loop twice. Then the probability that both
loops say pass both times is ⩽ (1/2)2. If we run the atomic
loop t-times, then the probability that all loops say pass is
⩽ (1/2)t = 2−t .
Note that if we say any atomic loop report fail, we know that
X is composite (and not Carmichael).
So, we consider the following algorithm.

Generating Primes



Basic Miller–Rabin Test VI

Is_Prime(X , t)
/*Implemented using Basic Miller–Rabin Algorithm*/

1 For i = 1 to t

1 α
$←{1, 2, . . . ,X − 1}

2 β = αX−1 mod X
3 If (β ̸= 1): Return false

2 Return true

The guarantee of this algorithm is

Is_Prime says true Is_prime says false
X is a prime 1 0

X is Carmichael ≈ 1 ≈ 0
X is a composite ⩽ 2−t ⩾ 1− 2−t

but not Carmichael

Generating Primes


