

Generating n-bit Primes

@ Let us begin by constructing an algorithm that outputs n-bit
prime numbers IF we can efficiently test whether a number is
a prime or not

@ We shall assume that Is_ Prime(X) returns true if and only if
X is prime number; otherwise, it returns false.

o Idea of the Algorithm. We will pick a random number X in
the range [2”*1,2” — 1] and test whether X is a prime
number or not. If X is a prime number, then we are done.
Otherwise, we repeat.

@ Consider the code for this algorithm

Generate_ Prime(n) :
© While (true):
o x& [2”*172" — 1}
@ If Is_Prime(X) then return X

Generating Primes

Generating n-bit Primes

@ To understand the running time of this algorithm, we will have
to understand the distribution of the primes. In particular, how
densely are prime numbers distributed over natural numbers?
Towards this, we shall use the following theorem without proof.

Theorem (Prime Number Theorem)
The total number of primes < N is (roughly) Py = N/ log N.

@ So, the number of primes in the range [2”*1,2" — 1] is
Pyn — Psn-1. Let us calculate this expression
on 2n—l

Pon — Pon1 = — —
2 2 n n—1

2 1
2n 1
(n n—1)

1
n

~ 2n—1

Generating Primes

Generating n-bit Primes

@ Note that the total number of integers in the range
[27=1,27 — 1] is exactly 271

e First Conclusion. As we have seen above, among these 271,
we have (roughly) 271 . % prime numbers. If we pick a
number at random from the range [2771,2" — 1], then the
probability that the number is a prime is

@ Intuitively, if we want to generate an n = 1000 bit prime
number, then the probability that a random number in the
range [299,2100 — 1] is a prime number is (roughly) % = ﬁ.

Generating Primes

\

Generating n-bit Primes

o Failing to generate a prime in t attempts. Note that the

probability that we fail to generate a prime number in one
iteration of the loop is given by

(-%)

So, the probability of failing to generate a prime number in
two iterations of the loop is given by

(1-3)

Similarly, the probability of failing to generate a prime number
in t iterations of the loop is given by

-ty

Generating Primes

Generating n-bit Primes

@ Recall from calculus classes. Consider f(x) = (1 — %)X

We know that)
lim f(x) =~

X—$00 e

o If t = an, then the probability that t iterations of the loop fail
to generate a prime is given by

(1) = (1) et

e Conclusion about the running time of the
Generate_ Prime Algorithm. Now, we can conclude that the
algorithm runs the loop t-times and does not find a prime
number is at most exp(—t)

Generating Primes

|deal Primality Testing

@ Our objective is to construct the Is_Prime algorithm

o Ideally, we would like the following input/output behavior from
the Is_ Prime algorithm. In the following table, we write the
probability that the algorithm says true/false conditioned on
the fact that the input X is a prime or composite.

Is_Prime says true

Is_prime says false

X is a prime

1

0

X is a composite

0

1

Read the table as follows. Conditioned on the fact that X is a
prime number, we want Is_ Prime(X) to return true with
probability 1. And, conditioned on the fact that X is a
composite number, we want Is_ Prime(X) to return false with

probability 1.

Generating Primes

|deal Primality Testing I

@ This algorithm should run in time that is polynomial in
x = log X, the number of bits needed to represent the number
X

@ This ideal algorithm was discovered in 2002 by
Agrawal-Kayal-Saxena. In practice, this algorithm is not used
for primality testing because this turns out to be too slow.

@ In practice, we use a randomized algorithm, namely, the
Miller—Rabin Test, that successfully distinguishes primes from
composites with very high probability. In this lecture, we will
study a basic version of this Miller-Rabin primality test

Generating Primes

Miller—Rabin Primality Testing Algorithm

@ Suppose we implement the Is_ Prime algorithm using the
Miller—Rabin Primality Testing Algorithm. This is a
randomized algorithm with a one-sided error. It takes as an
additional parameter t and assures the following

Is_Prime says true | Is_prime says false

X is a prime 1 0

X is a composite <27t >1-27t

@ When X is a prime number, the algorithm does not err!
However, when X is a composite number, the algorithm might
mistakenly declare it as a prime with probability 27*. So, we
say that it has a one-sided error.

@ The running time of the algorithm is polynomial in x (the
number of bits needed to represent the number X) and ¢t

@ For example, we can test the primality of a 1000-bit prime
with confidence 1 — 275% in running time that is polynomial
in x = 1000 and t = 500.

Generating Primes

Basic Miller—Rabin Test

@ In this section, we aim to implement the Is Prime test using
the basic Miller—Rabin test

@ The basic Rabin—Miller test that we shall learn in this class
NEARLY works. Except that for some VERY WEIRD inputs
X, it messes up badly. These very weird inputs are composite;
however, the basic Miller-Rabin algorithm returns true (i.e., it
mistakenly declares it as a prime number)

@ These VERY WEIRD composite numbers are called the
Carmichael numbers. There are infinitely many Carmichael
numbers. Otherwise, we could have tested if X belongs to this
finite set! However, the good news is that they are very sparse.
Erdés proved that the total number of Carmichael numbers
< N is given by

N

exp [n Aloglogn’
P log n

Generating Primes

Basic Miller—Rabin Test

where XA > 0 is a constant and n is the number of bits needed
to represent N. So, it is very unlikely that a random number
being tested for primality is, in fact, a Carmichael number.
The smallest Carmichael number is 561 = 3-11 - 17

@ What will Basic Rabin—Miller achieve? The guarantees are

summarized below.

Is Prime says true

Is_ prime says false

but not Carmichael

X is a prime 1 0
X is Carmichael ~1 ~0
X is a composite <27t >1-27¢

e Atomic Test. Consider the following loop

Generating Primes

Basic Miller—Rabin Test

Q Picka & {1,2,..., X —1}
@ Compute 8 =aX"1 mod X
© If (8 ==1): Return pass
@ Else: Return fail

Recall that we have proven in the homework that o

X71:1

mod X for a prime X, for any integer X € {1,2,...,X — 1}.
So, we can conclude the following.

Atomic Loop says pass

Atomic Loop says fail

X is a prime

1

0

Even though they are composite numbers, Carmichael
numbers are such that for a € {1,..., X — 1} relatively prime
to X satisfies X1 =1 mod X. Typically there are a lot of
numbers in {1,..., X — 1} that are relatively prime to X. So,
we can conclude that

Generating Primes

Basic Miller—Rabin Test

\%

Atomic Loop says pass

Atomic Loop says fail

X is a prime

X is Carmichael

When X is a composite number that is not a Carmichael
number, we shall use the following result without proof.

a1 £1 mod X.

Suppose X is a composite number that is not a Carmichael
number. Then, at least half of o € {1,..., X — 1} satisfy

This result helps us conclude that the Atomic Loop will output
fail with probability > 1/2. So, we can fill the final row in the

table as

Generating Primes

Basic Miller—Rabin Test

Atomic Loop says pass

Atomic Loop says fail

but not Carmichael

X is a prime 1 0
X is Carmichael ~1 ~0
X is composite <1/2 >1/2

@ Using Atomic Loop to get the Basic Miller—Rabin Test.
Suppose X is not a Carmichael number but is composite. Note
that when we run the atomic loop once, the probability that
the algorithm mistakenly says pass is < 1/2. Similarly, when
we run the atomic loop twice. Then the probability that both
loops say pass both times is < (1/2)2. If we run the atomic
loop t-times, then the probability that all loops say pass is

<(1/2)f =27t

Note that if we say any atomic loop report fail, we know that
X is composite (and not Carmichael).
So, we consider the following algorithm.

Generating Primes

Basic Miller—Rabin Test

Is_Prime(X, t)
/*Implemented using Basic Miller—Rabin Algorithm*/

Q Fori=1tot

0 ol {1,2,... X1}
0 A=0c""1 mod X
© If (8 # 1): Return false

@ Return true

The guarantee of this algorithm is

Is_Prime says true

Is _prime says false

but not Carmichael

X is a prime 1 0
X is Carmichael ~1 ~0
X is a composite <27t >1-27"

Generating Primes

