Homework 6

1. **RSA Assumption (5+12+5).** Consider RSA encryption scheme with parameters $N = 35 = 5 \times 7$.

 (a) Find $\varphi(N)$ and \mathbb{Z}_N^*.

 (b) Use repeated squaring and complete the rows X, X^2, X^4 for all $X \in \mathbb{Z}_N^*$ as you have seen in the class (slides), that is, fill in the following table by adding as many columns as needed.

 Solution.

<table>
<thead>
<tr>
<th>X</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>9</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>X^2</td>
<td></td>
</tr>
<tr>
<td>X^4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>18</th>
<th>19</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>26</th>
<th>27</th>
<th>29</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td>X^2</td>
<td></td>
</tr>
<tr>
<td>X^4</td>
<td></td>
</tr>
</tbody>
</table>
(c) Find the row X^5 and show that X^5 is a bijection from \mathbb{Z}_N^* to \mathbb{Z}_N^*.

Solution.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
X & 1 & 2 & 3 & 4 & 6 & 8 & 9 & 11 & 12 & 13 & 16 & 17 \\
\hline
X^4 & & & & & & & & & & & & \\
\hline
X^5 & & & & & & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
X & 18 & 19 & 22 & 23 & 24 & 26 & 27 & 29 & 31 & 32 & 33 & 34 \\
\hline
X^4 & & & & & & & & & & & & \\
\hline
X^5 & & & & & & & & & & & & \\
\hline
\end{tabular}
2. **Answer the following questions (7+7+7+7 points):**

 (a) (7 points) Compute the three least significant (decimal) digits of $6251007^{1960404}$ by hand. Explain your logic.

 Solution.
(b) (7 points) Is the following RSA signature scheme valid? (Justify your answer)

\[(r\|m) = 24, \sigma = 196, N = 1165, e = 43\]

Here, \(m\) denotes the message, and \(r\) denotes the randomness used to sign \(m\) and \(\sigma\) denotes the signature. Moreover, \((r\|m)\) denotes the concatenation of \(r\) and \(m\).

The signature algorithm \(\text{Sign}(m)\) returns \((r\|m)^d \mod N\) where \(d\) is the inverse of \(e\) modulo \(\varphi(N)\). The verification algorithm \(\text{Ver}(m, \sigma)\) returns \((r\|m) == \sigma^e \mod N\).

Solution.
(c) (7 points) Remember that in RSA encryption and signature schemes, $N = p \times q$ where p and q are two large primes. Show that in a RSA scheme (with public parameters N and e), if you know N and $\varphi(N)$, then you can efficiently factorize N i.e. you can recover p and q.

Solution.

(d) (7 points) Consider an encryption scheme where $Enc(m) := m^e \mod N$ where e is a positive integer relatively prime to $\varphi(N)$ and $Dec(c) := c^d \mod N$ where d is the inverse of e modulo $\varphi(N)$. Show that in this encryption scheme, if you know the encryption of m_1 and the encryption of m_2, then you can find the encryption of $(m_1 \times m_2)^5$.

Solution.
(e) (7 points) Suppose \(n = 11413 = 101 \cdot 113 \), where 101 and 113 are primes. Let \(e_1 = 8765 \) and \(e_2 = 7653 \).

i. (2 points) Only one of the two exponents \(e_1, e_2 \) is a valid RSA encryption key, which one?

ii. (3 points) For the valid encryption key, compute the corresponding decryption key \(d \).

iii. (2 points) Decrypt the cipher text \(c = 3233 \).
3. Euler Phi Function (30 points)

(a) (10 points) Let $N = p_1^{e_1} \cdot p_2^{e_2} \cdots p_t^{e_t}$ represent the unique prime factorization of a natural number N, where $p_1 < p_2 < \cdots < p_t$ are prime numbers and e_1, e_2, \ldots, e_t are natural numbers. Let $\mathbb{Z}_N^* = \{x : 0 \leq x < N - 1, \gcd(x, N) = 1\}$ and $\phi(N) = |\mathbb{Z}_N^*|$. Using the inclusion exclusion principle, prove that

$$\phi(N) = N \cdot \left(1 - \frac{1}{p_1}\right) \cdot \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_t}\right).$$

Solution.
(b) (5 points) For any $x \in \mathbb{Z}_N^*$, prove that

$$x^{\phi(N)} = 1 \mod N.$$

Hint: Consider the subgroup generated by x.

Solution.
(c) **Replacing $\phi(N)$ with $\frac{\phi(N)}{2}$ in RSA.** (15 points)

In RSA, we pick the exponent e and the decryption key d from the set $\mathbb{Z}_{\phi(N)}^*$. This problem shall show that we can choose $e, d \in \mathbb{Z}_{\phi(N)/2}^*$ instead.

Let p, q be two distinct odd primes and define $N = pq$.

i. (2 points) For any $e \in \mathbb{Z}_{\phi(N)/2}^*$, prove that $x^e : \mathbb{Z}_N^* \to \mathbb{Z}_N^*$ is a bijection.

ii. (7 points) Consider any $x \in \mathbb{Z}_N^*$. Prove that $x^{\frac{\phi(N)}{2}} \equiv 1 \mod p$ and $x^{\frac{\phi(N)}{2}} \equiv 1 \mod q$.

iii. (3 points) Consider any $x \in \mathbb{Z}_N^*$. Prove that $x^{\frac{\phi(N)}{2}} \equiv 1 \mod N$.

iv. (3 points) Suppose e, d are integers that $e \cdot d \equiv 1 \mod \frac{\phi(N)}{2}$. Show that $(x^e)^d = x \mod N$, for any $x \in \mathbb{Z}_N^*$.
4. **Understanding hardness of the Discrete Logarithm Problem.** (15 points)

Suppose \((G, \circ)\) is a group of order \(N\) generated by \(g \in G\). Suppose there is an algorithm \(A_{DL}\) that, when given input \(X \in G\), it outputs \(x \in \{0, 1, \ldots, N - 1\}\) such that \(g^x = X\) with probability \(p_X\).

Think of it this way: The algorithm \(A_{DL}\) solves the discrete logarithm problem; however, for different inputs \(X \in G\), its success probability \(p_X\) may be different.

Let \(p = \frac{\sum_{X \in G} p_X}{N}\) represent the average success probability of \(A_{DL}\) solving the discrete logarithm problem when \(X\) is chosen uniformly at random from \(G\).

Construct a new algorithm \(B\) that takes any \(X \in G\) as input and outputs \(x \in \{0, 1, \ldots, N - 1\}\) (by making one call to the algorithm \(A_{DL}\)) such that \(g^x = X\) with probability \(p\). This new algorithm that you construct shall solve the discrete logarithm problem for every \(X \in G\) with the same probability \(p\).

(Remark: Intuitively, this result shows that solving the discrete logarithm problem for any \(X \in G\) is no harder than solving the discrete logarithm problem for a random \(X \in G\).)

Solution:
5. Concatenating a random bit string before a message. (15 points)

Let $m \in \{0, 1\}^a$ be an arbitrary message. Define the set

$$S_m = \{ (r|m) : r \in \{0, 1\}^b \}.$$

Let p be an odd prime. Recall that in RSA encryption algorithm, we encrypted a message y chosen uniformly at random from this set S_m.

Prove the following

$$\Pr_{y \in S_m} [p \text{ divides } y] \leq 2^{-b} \cdot \left\lceil \frac{2^b}{p} \right\rceil.$$

(Remark: This bound is tight as well. There exists m such that equality is achieved in the probability expression above. Intuitively, this result shows that the message y will be relatively prime to p with probability (roughly) $(1 - 1/p)$.)
6. \(x^e \) if and only if \(e \) is relatively prime to \(\phi(N) \) (20 points)

In this problem we will partially prove a result from the class that was left unproven. Suppose \(N = pq \), where \(p \) and \(q \) are distinct prime numbers. Let \(e \) be a natural number that is relatively prime to \(\phi(N) = (p-1)(q-1) \). In the lectures, we claimed (without proof) that the function \(x^e : \mathbb{Z}_N^* \to \mathbb{Z}_N^* \) is a bijection. The following problem is key to proving this result.

Let \(N = pq \), where \(p \) and \(q \) are distinct prime numbers. Let \(e \) be a natural number that is relatively prime to \((p-1)(q-1) \). Consider \(x, y \in \mathbb{Z}_N^* \). If \(x^e \equiv y^e \pmod{N} \), then prove that \(x = y \).

Hint: You might find the following facts useful.

- Every \(\alpha \in \mathbb{Z}_N \) can be uniquely written as \(\alpha = (\alpha_p, \alpha_q) \) such that \(\alpha = \alpha_p \pmod{p} \) and \(\alpha = \alpha_q \pmod{q} \), using the Chinese Remainder theorem. We will write this observation succinctly as \(\alpha = (\alpha_p, \alpha_q) \pmod{(p, q)} \).

- For \(\alpha, \beta \in \mathbb{Z}_N \), and \(e \in \mathbb{N} \) we have \(\alpha^e = \beta \pmod{N} \) if and only if \(\alpha_p^e = \beta_p \pmod{p} \) and \(\alpha_q^e = \beta_q \pmod{q} \). We will write this succinctly as \(\alpha^e = (\alpha_p^e, \alpha_q^e) \pmod{(p, q)} \).

- From the Extended GCD algorithm, if \(u \) and \(v \) are relatively prime then, there exists integers \(a, b \in \mathbb{Z} \) such that \(au + bv = 1 \).

- Fermat’s little theorem states that \(x^{p-1} \equiv 1 \pmod{p} \) if \(x \) is a natural number that is relatively prime to the prime \(p \).
7. **Challenging: Inverting exponentiation function.** (20 points)

Fix $N = pq$, where p and q are distinct odd primes. Let e be a natural number such that $\gcd(e, \phi(N)) = 1$. Suppose there is an adversary A running in time T such that

$$\Pr\left[A([x^e \mod N]) = x \right] = 0.01$$

for x chosen uniformly at random from \mathbb{Z}_N^*. Intuitively, this algorithm successfully finds the e-th root with probability 0.01, for a random x.

For any $\varepsilon \in (0, 1)$, construct an adversary B_ε (which, possibly, makes multiple calls to the adversary A) such that

$$\Pr\left[B_\varepsilon([x^e \mod N]) = x \right] = 1 - \varepsilon,$$

for every $x \in \mathbb{Z}_N^*$. The algorithm B_ε should have running time polynomial in $T, \log N$, and $\log 1/\varepsilon$.
Collaborators: