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Homework 1

1. Estimating (1− x) using exp(·) function. For x ∈ [0, 1), we know that

ln(1− x) = −x− x2

2
− x3

3
−· · · .

(a) (5 points) Prove that 1− x ⩽ exp
(
−x− x2

2

)
.

Solution.
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(b) (5 points) For x ∈ [0, 1/2], prove that

1− x ⩾ exp
(
−x− x2

)
.

Solution.
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2. Tight Estimations Provide meaningful upper and lower bounds for the following expres-
sions.

(a) (5 points) Sn =
∑∞

i=1 i
− 13

11 .

Hint: Your upper and lower bounds should be constants.

Solution.
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(b) (10 points) An = n!.

Hint: You may want to start by upper and lower bounding Sn =
∑n

i=1 ln i.

Solution.

4



CS 555, FALL 2023 Name: Hemanta K. Maji

(c) (10 points) Bn =
(
2n
n

)
.

Hint: Note that
(
2n
n

)
= (2n)!

(n!)2
.

Solution.
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3. Understanding Joint Distribution. Ten balls are to be tossed into five bins numbered
{1, 2, 3, 4, 5}. Each ball is thrown into a bin uniformly and independently into the bins. For
i ∈ {1, 2, 3, 4, 5}, let Xi represent the number of balls that fall into bin i.

(a) (5 points) Find the (marginal) distribution of X1 and compute its expected value.

Solution.

(b) (3 points) Find the expected value of X1 +X2 +X3.

Solution.
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(c) (7 points) Find Pr[[X1 = 4|X1 +X2 +X3 = 7]].

Solution.
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4. Sending one bit.

Alice intends to send a bit b ∈ {0, 1} to Bob. When Alice sends the bit, it goes through a
series of n relays before reaching Bob. Each relay flips the received bit independently with
probability p before forwarding that bit to the next relay.

(a) (5 points) Show that Bob will receive the correct bit with probability

⌊n/2⌋∑
k=0

(
n

2k

)
p2k · (1− p)n−2k.

Hint: Be careful that Alice could be sending either 0 or 1.

Solution.
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(b) (5 points) Let us consider an alternative way to calculate this probability. We say that
the relay has bias q if the probability it flips the bit is (1 − q)/2. The bias q is a real
number between −1 and +1. Show that sending a bit through two relays with bias q1
and q2 is equivalent to sending a bit through a single relay with bias q1 · q2.
Solution.

(c) (5 points) Prove that the probability you receive the correct bit when it passes through
n relays is

1 + (1− 2p)n

2
.

Solution.
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5. An Useful Estimate.

For an integers n and t satisfying 0 ⩽ t ⩽ n/2, define

Pn(t) =

(
1− 1

n

)(
1− 2

n

)
· · ·
(
1− t

n

)
We will estimate the above expression. (Remark: You shall see the usefulness of this estimation in the

topic “Birthday Bound” that we shall cover in the forthcoming lectures.)

(a) (13 points) Show that

exp

(
− t2

2n
− t

2n
−

Θ
(
t3
)

6n2

)
⩾ Pn(t) ⩾ exp

(
− t2

2n
− t

2n
−

Θ
(
t3
)

3n2

)
.

Solution.
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(b) (2 points) When t =
√
2cn, where c is a positive constant, the expression above is

Pn(t) = exp
(
−c− Θ

(
1/
√
n
) )

.

Solution.

11


