Lecture 25: RSA Encryption
Recall: RSA Assumption

- We pick two primes uniformly and independently at random $p, q \stackrel{\$}{\leftarrow} P_n$
- We define $N = p \cdot q$
- We shall work over the group (\mathbb{Z}_N^*, \times), where \mathbb{Z}_N^* is the set of all natural numbers $< N$ that are relatively prime to N, and \times is integer multiplication mod N
- We pick $y \stackrel{\$}{\leftarrow} \mathbb{Z}_N^*$
- Let $\varphi(N)$ represent the size of the set \mathbb{Z}_N^*, which is $(p - 1)(q - 1)$
- We pick any $e \in \mathbb{Z}_{\varphi(N)}^*$, that is, e is a natural number $< \varphi(N)$ and is relatively prime to $\varphi(N)$
- We give (n, N, e, y) to the adversary A as ask her to find the e-th root of y, i.e., find x such that $x^e = y$

RSA Assumption. For any computationally bounded adversary, the above-mentioned problem is hard to solve
Recall: Properties

- The function $x^e : \mathbb{Z}_N^* \rightarrow \mathbb{Z}_N^*$ is a bijection for all e such that $\gcd(e, \phi(N)) = 1$.
- Given (n, N, e, y), where $y \leftarrow \mathbb{Z}_N^*$, it is difficult for any computationally bounded adversary to compute the e-th root of y, i.e., the element $y^{1/e}$.
- But given d such that $e \cdot d = 1 \mod \phi(N)$, it is easy to compute $y^{1/e}$, because $y^d = y^{1/e}$.

Now, think about how we can design a key-agreement scheme using these properties. Once the key agreement protocol is ready, we can create a public-key encryption scheme with a one-time pad.
First, Alice and Bob establish a key that is hidden from the adversary

Alice

\[p, q \leftarrow P_n \]

Bob

\[N = p \cdot q \]

\[r \leftarrow \mathbb{Z}^*_N \]

pk = (n, N, e)

Pick any \(e \in \mathbb{Z}^*_\phi(N) \)

\[y = r^e \]

\[y \]

\[\tilde{r} = y^d \]

Note that \(r = \tilde{r} \) and is hidden from an adversary based on the RSA assumption
Using this key, Alice sends the encryption of $m \in \mathbb{Z}_N^*$ using the one-time pad encryption scheme.

$$c = m \cdot r$$

Since we always have $r = \tilde{r}$, this encryption scheme always decrypts correctly. Note that $\text{inv}(\tilde{r})$ can be computed only by knowing $\varphi(N)$.

Bob

$$\tilde{m} = c \cdot \text{inv}(\tilde{r})$$
Putting the two together: RSA Encryption (First Attempt)

Alice

Bob

\(p, q \leftarrow P_n \)

\(N = p \cdot q \)

\(pk = (n, N, e) \)

Pick any \(e \in \mathbb{Z}^*_\varphi(N) \)

\(r \leftarrow \mathbb{Z}^*_N \)

\(y = r^e \)

\(c = m \cdot r \)

\((y, c) \rightarrow \tilde{r} = y^d \)

\(\tilde{m} = c \cdot \text{inv}(\tilde{r}) \)
We emphasize that this encryption scheme work only for $m \in \mathbb{Z}_N^*$. In particular, this works for all messages m that have a binary representation of length less than n-bits because p and q are n-bit primes.

However, this scheme is insecure
Insecurity of the First Attempt

- Let us start with a simpler problem.

 Suppose I pick an integer \(x \) and give \(y = x^3 \) to you. Can you efficiently find the \(x \)?

- Running for for loop with \(i \in \{0, \ldots, y\} \) and testing whether \(i^3 = y \) or not is an inefficient solution.

- However, binary search on the domain \(\{0, \ldots, y\} \) is an efficient algorithm.

- Then why does the RSA assumption that says “computing the \(e \)-th root is difficult if \(\varphi(N) \) is unknown” hold? Answer: Because we are working over \(\mathbb{Z}_N^* \) and not \(\mathbb{Z} \!^* \) “Wrapping around” due to the modulus operation while cubing kills the binary search approach.

- However, if \(x \) is such that \(x^e < N \) then the modulus operation does not take effect. So, if \(x < N^{1/e} \) then we can find the \(e \)-th root of \(y \)!
Now, let us try to attack the “first attempt” algorithm.

Recall that we have $c = m \cdot r$ and $y = r^e$. So, we have $c^e = m^e \cdot r^e$. Now, note that $c^e \cdot \text{inv}(y) = m^e \cdot r^e \cdot y^{-1} = m^e$.

So, the adversary can compute $c^e \cdot \text{inv}(y)$ to obtain m^e. If $m < N^{1/e}$, then the adversary can use binary search to recover m.

There is another problem! If Alice is encrypting and sending multiple messages $\{m_1, m_2, \ldots\}$, then the eavesdropper can recover $\{m_1^e, m_2^e, \ldots\}$. So, she can find which of these $\{m_1^e, m_2^e, \ldots\}$ are identical. In turn, she can find out the messages in $\{m_1, m_2, \ldots\}$ that are identical (because $x^e : \mathbb{Z}_N^* \rightarrow \mathbb{Z}_N^*$ is a bijection).

How do we fix these attacks?
Our idea is to pad the message m with some randomness s. The new message $s \| m$, with high probability, satisfies $(s \| m)^e > N$ (that is, it wraps around).

How does it satisfy the second attack mentioned above (Think: Birthday bound)?

Let us write down the new encryption scheme for $m \in \{0, 1\}^{n/2}$

\[
\text{Enc}_{n, N, e}(m):
\]

1. Pick $r \leftarrow \mathbb{Z}_N^*$
2. Pick $s \leftarrow \{0, 1\}^{n/2}$
3. Compute $y = r^e$, and $c = (s \| m) \cdot r$
4. Return (y, c)
Note that masking with r is not helping at all! Let us call $s||m$ as the payload. An adversary can obtain the “e-th power of the payload” by computing $c^e \cdot y^{-1}$.

So, we can use the following optimized encryption algorithm instead:

$\text{Enc}_{n,N,e}(m)$:
1. Pick $s \leftarrow \{0, 1\}^{n/2}$
2. Return $c = (s||m)^e$
Let us summarize all the algorithms that we need to implement the RSA algorithm

1. Generating n-bit primes to sample p and q
2. Generating e such that e is relatively prime to $\varphi(N)$, where $N = pq$
3. Finding the trapdoor d such that $e \cdot d = 1 \mod \varphi(N)$