Lecture 20: Pseudorandom Functions
Pseudo-random Functions (PRF)

- Let $G_{m,n,k} = \{g_1, g_2, \ldots, g_{2^k}\}$ be a set of functions such that each $g_i : \{0, 1\}^m \rightarrow \{0, 1\}^n$

- This set of functions $G_{m,n,k}$ is called a pseudo-random function if the following holds.

 Suppose we pick $g \leftarrow G_{m,n,k}$. Let $x_1, \ldots, x_t \in \{0, 1\}^m$ be distinct inputs. Given $(x_1, g(x_1)), \ldots, (x_{t-1}, g(x_{t-1}))$ for any computationally bounded party the value $g(x_t)$ appears to be uniformly random over $\{0, 1\}^n$.
Before we construct a PRF, let us consider the following secret-key encryption scheme.

1. Gen(): Return $sk = \text{id} \leftarrow \{1, \ldots, 2^k\}$

2. Enc$_{id}(m)$: Pick a random $r \leftarrow \{0, 1\}^m$. Return $(m \oplus g_{id}(r), r)$, where $m \in \{0, 1\}^n$.

3. Dec$_{id}(\tilde{c}, \tilde{r})$: Return $\tilde{c} \oplus g_{id}(\tilde{r})$.

Features. Suppose the messages m_1, \ldots, m_u are encrypted as the cipher-texts $(c_1, r_1), \ldots, (c_u, r_u)$.

- As long as the r_1, \ldots, r_u are all distinct, each one-time pad $g_{id}(r_1), \ldots, g_{id}(r_u)$ appear uniform and independent of others to computationally bounded adversaries. So, this encryption scheme is secure against computationally bounded adversaries!

- The probability that any two of the randomness in r_1, \ldots, r_u are not distinct is very small (We shall prove this later as “Birthday Paradox”)

- This scheme is a “state-less” encryption scheme. Alice and Bob do not need to remember any private state (except the secret-key sk)!
We shall consider the construction of Goldreich-Goldwasser-Micali (GGM) construction.

Let $G : \{0, 1\}^k \rightarrow \{0, 1\}^{2k}$ be a PRG. We define $G(x) = (G_0(x), G_1(x))$, where $G_0, G_1 : \{0, 1\}^k \rightarrow \{0, 1\}^k$

Let $G' : \{0, 1\}^k \rightarrow \{0, 1\}^n$ be a PRG.

We define $g_{id}(x_1 x_2 \ldots x_m)$ as follows

$$G' (G_{x_m}(\cdots G_{x_2}(G_{x_1}(id))\ldots))$$
Consider the execution for $x = x_1x_2x_3 = 010$. Output z is computed as follows.

Construction of PRF II

- Go Left because $x_1 = 0$
- Go Right because $x_2 = 1$
- Go Left because $x_3 = 0$

$z = G' \cdot G \cdot G$, with $G' \cdot G$ computed using the key sk. The final output is z.
We give the pseudocode of algorithms to construct PRG and PRF using a OWP $f : \{0, 1\}^{k/2} \rightarrow \{0, 1\}^{k/2}$

- Suppose $f : \{0, 1\}^{k/2} \rightarrow \{0, 1\}^{k/2}$ is a OWP
- We provide the pseudocode of a PRG $G : \{0, 1\}^k \rightarrow \{0, 1\}^t$, for any integer t, using the one-bit extension PRG construction of Goldreich-Levin hardcore predicate construction. Given input $s \in \{0, 1\}^k$, it outputs $G(s)$.

\[G(k, t, s) : \]

1. Interpret $s = (r, x)$, where $r, x \in \{0, 1\}^{k/2}$
2. Initialize bits = [] (i.e., an empty list)
3. Initialize $z = x$
4. For $i = 1$ to t:
 - bits.append($\langle r, z \rangle$), here $\langle \cdot, \cdot \rangle$ is the inner-product
 - $z = f(z)$
5. Return bits
We provide the pseudocode of the PRF $g_{id} : \{0, 1\}^m \rightarrow \{0, 1\}^n$, where $id \in \{0, 1\}^k$, using the GGM construction. Given input $x \in \{0, 1\}^m$, it outputs $g_{id}(x)$.

$g(m, n, k, id, x)$:
1. Interpret $x = x_1 x_2 \ldots x_m$, where $x_1, \ldots, x_m \in \{0, 1\}$
2. Initialize $inp = id$
3. For $i = 1$ to m:
 1. Let $y = G(k, 2k, inp)$
 2. If $x_i = 0$, then inp is the first k bits of y. Otherwise (if $x_i = 1$), inp is the last k bits of y.
4. Return $G(k, n, inp)$
Naor-Reingold PRF

- This function evaluation is parallelizable, and its security is based on the “Decisional Diffie-Hellman problem” (DDH).
- Let p and ℓ be prime numbers such that ℓ divides $(p - 1)$.
- $g \in F_p^*$ generate a subgroup of order ℓ
- Naor-Reingold PRF are functions $\{0, 1\}^n \rightarrow F_p^*$ defined below:

$$f_a(x) := g^{a_0 \cdot a_1^{x_1} \cdot a_2^{x_2} \cdots a_n^{x_n}},$$

where

$$a = a_0 a_1 \cdots a_n \in (F_{\ell})^{n+1}$$

$$x = x_1 x_2 \cdots x_n \in \{0, 1\}^n.$$

- Note: For an additive group like an elliptic curve, the definition of the function is

$$f_a(x) := (a_0 \cdot a_1^{x_1} \cdot a_2^{x_2} \cdots a_n^{x_n}) \cdot G,$$

where the subgroup generated by G has order ℓ.