Lecture 09: Shamir Secret Sharing (Introduction)
The objective of this new cryptographic primitive is to share a secret s among n people such that the following holds. The following conditions are satisfied for a fixed number $t < n$.

- If $< t$ parties get together, then they get no additional information about the secret.
- If $\geq t$ parties get together, then they can correctly reconstruct the secret.

In this lecture, we study an introductory version of this cryptographic primitive
We have seen that \((\mathbb{Z}_p, +, \times)\) is a field, when \(p\) is a prime

- Recall that \(+\) is integer addition modulo the prime \(p\)
- Recall that \(\cdot\) is integer multiplication modulo the prime \(p\)
- For example, the additive inverse of \(x\) is \((p - x)\), for \(x \in \mathbb{Z}_p\) (because \(x + (p - x) = 0 \mod p\))
- In the homework, you have shown that the multiplicative inverse of \(x\) is \(x^{p-2}\), for \(x \in \mathbb{Z}_p^*\) (i.e., \(x \times (x^{p-2}) = 1 \mod p\))
For a working example, suppose $p = 5$. Therefore, $x^{p-2} = x^3$ is the multiplicative inverse of x in $(\mathbb{Z}_5, +, \times)$

- The multiplicative inverse of 1 is $1^{p-2} = 1$, i.e. $(1/1) = 1$
- The multiplicative inverse of 2 is $2^{p-2} = 2 \times 2 \times 2 = 4 \times 2 = 3$, i.e. $(1/2) = 3$
- The multiplicative inverse of 3 is $3^{p-2} = 3 \times 3 \times 3 = 4 \times 3 = 2$, i.e. $(1/3) = 2$
- The multiplicative inverse of 4 is $4^{p-2} = 4 \times 4 \times 4 = 1 \times 4 = 4$, i.e. $(1/4) = 4$
Interpreting “fractions” over the field \((\mathbb{Z}_p, +, \times)\)

- When we write \(4/3\)
- We mean \(4 \cdot (1/3)\),
- That is 4 multiplied by the “multiplicative inverse of 3”
- That is 4 multiplied by 2 (because in the previous slide we saw that the multiplicative inverse of 3 in \((\mathbb{Z}_5, +, \times)\) is 2)
- The answer, therefore, is 3 (because \(4 \times 2 = 3 \mod 5\))

Note

While working over real numbers, we associate “4/3” to the fraction “1.333...,” i.e. a fractional number. But when working over the field \((\mathbb{Z}_p, +, \times)\) we will interpret the expression “4/3” as the number “4 \times \text{mult-inv}(3)”
Experiments

Coding Exercise

Students are highly encouraged to go to cocalc.com and explore field arithmetic using sage
Suppose a central authority P has a secret s (some natural number)

The central authority wants to share the secret among n parties P_1, P_2, \ldots, P_n such that

- **Privacy.** No party can reconstruct the secret s.
- **Reconstruction.** Any two parties can reconstruct the entire secret s
Secret Sharing: Algorithms (Introduction)

Sharing Algorithm: SecretShare \((s, n)\).
- Takes as input a secret \(s\)
- Takes as input \(n\), the number of shares it needs to create
- Outputs a vector \((s_1, s_2, \ldots, s_n)\) the *secret shares* for each party

Reconstruction Algorithm: SecretReconstruct \((i_1, s^{(1)}, i_2, s^{(2)})\).
- Takes as input the identity \(i_1\) of the first party and identity \(i_2\) of the second party
- Takes as input their respective secrets \(s^{(1)}\) and \(s^{(2)}\)
- Outputs the reconstructed secret \(\tilde{s}\)
- The probability that the reconstructed secret \(\tilde{s}\) is identical to the original secret \(s\) is close to 1

Shamir Secret Sharing
The intuition underlying the construction:

- Given one point in a plane, there are a lot of straight lines passing through it (In fact, we need the fact that every length of the intercept on the Y-axis is equally likely).

- But, given two points in a plane, there is a unique line passing through it, thus the length of the intercept on the Y-axis is unique.
Let \((\mathbb{F}, +, \times)\) be a field such that \(\{0, 1, \ldots, n\} \subseteq \mathbb{F}\) and the secret \(s \in \mathbb{F}\). The secret sharing algorithm is provided below. SecretShare \((s, n)\).

- Choose a random line \(\ell(X)\) passing through the point \((0, s)\). Note that the equation of the line is \(a \cdot X + s\), where \(a\) is randomly chosen from \(\mathbb{F}\).
- Evaluate the line \(\ell(X)\) at \(X = 1, X = 2, \ldots, X = n\) to generate the secret shares \(s_1, s_2, \ldots, s_n\). That is, \(s_1 = \ell(X = 1), s_2 = \ell(X = 2), \ldots, s_n = \ell(X = n)\).
The reconstruction algorithm is provided below. $\text{SecretReconstruct} \ (i_1, s^{(1)}, i_2, s^{(2)}).$

- Compute the equation of the line

$$
\ell'(X) := \frac{s^{(2)} - s^{(1)}}{i_2 - i_1} \cdot X + \left(\frac{i_2 s^{(1)} - i_1 s^{(2)}}{i_2 - i_1}\right)
$$

- Let \tilde{s} be the evaluation of the line $\ell'(X)$ at $X = 0$. That is, return $\tilde{s} = \ell'(0) = \left(\frac{i_2 s^{(1)} - i_1 s^{(2)}}{i_2 - i_1}\right)$.
Privacy Argument

- Given the share of only one party \((i_1, s^{(1)})\), there is a unique line passing through the points \((i_1, s^{(1)})\) and \((0, \alpha)\), for every \(\alpha \in F\).

- So, *all secrets are equally likely from this party’s perspective*

In the future, we will mathematically formalize and prove the *italicized* statement above
Suppose yesterday morning the central authority P gets the secret $s = 3$

And the central authority wants to share the secret among $n = 4$ parties

Note that we can work over $(\mathbb{Z}_p, +, \times)$, where $p = 5$

Because $\{1, \ldots, 4\} \subseteq \mathbb{Z}_p^*$
Execution of the Secret-sharing Algorithm

- The central authority picks a random line that passes through
 \((0, s) = (0, 3)\)
- The equation of such a line looks like
 \[\ell(X) = k \cdot X + 3, \]
 where \(k\) is an element in \(\mathbb{Z}_p\) chosen uniformly at random
- Suppose it turns out that \(k = 2\)
- Now, the shares of the four parties are the evaluation of the line \(\ell(X)\) at \(X = 1, X = 2, X = 3,\) and \(X = 4\).
- So, the secret shares of parties 1, 2, 3, and 4 are respectively

 \[
 \begin{align*}
 s_1 &= \ell(X = 1) = 2 \times 1 + 3 = 0 \\
 s_2 &= \ell(X = 2) = 2 \times 2 + 3 = 2 \\
 s_3 &= \ell(X = 3) = 2 \times 3 + 3 = 4 \\
 s_4 &= \ell(X = 4) = 2 \times 4 + 3 = 1
 \end{align*}
 \]
Yesterday, at the end of the day, the central authority provided each party their respective secret share (that is, the central authority provides 0 to party 1, 2 to party 2, 4 to party 3, and 1 to party 4)

- Note that the equation of the line $\ell(X)$ is hidden from the parties
- All that the party i knows is that the line $\ell(X)$ passes through the point (i, s_i)

After that, parties 1, 2, 3, and 4 part ways and go to their own homes
Today, let us zoom into Party 3’s home

- Party 3 has secret share 4
- To find the secret s, party 3 enumerates all lines passing through the point $(3, 4)$

\[
\begin{align*}
\ell_0(X) &= 0 \cdot X + 4 \\
\ell_1(X) &= 1 \cdot X + 1 \\
\ell_2(X) &= 2 \cdot X + 3 \\
\ell_3(X) &= 3 \cdot X + 0 \\
\ell_4(X) &= 4 \cdot X + 2
\end{align*}
\]
Note that the central authority could have picked up *any* of these lines yesterday.

Note that:

- The line ℓ_0 has intercept 4 on the Y-axis (i.e., the evaluation of the line at $X = 0$),
- The line ℓ_1 has intercept 1 on the Y-axis,
- The line ℓ_2 has intercept 3 on the Y-axis,
- The line ℓ_3 has intercept 0 on the Y axis, and
- The line ℓ_4 has intercept 2 on the Y-axis.

So, it is equally likely that the central authority shared the secret 0, 1, 2, 3, or 4 yesterday.
Tomorrow, Party 3 decides to meet Party 1, and they will work together on reconstructing the secret. Their reconstruction steps are provided below.

- Party 1’s secret share is 0, and Party 3’s secret share is 4
- So, the line has to pass through the points \((1, 0)\) and \((3, 4)\)
- The slope of the line is

\[
\frac{4 - 0}{3 - 1} = 4 \times \left(\frac{1}{2}\right)
\]

\[
= 4 \times 3\text{, because the multiplicative inverse of }2\text{ is }3
\]

\[
= 2
\]

- So, the equation of the line is of the form

\[
\ell'(X) = 2 \cdot X + c
\]

- And, at \(X = 1\) the line evaluates to 0. So, the line is

\[
\ell'(X) = 2 \cdot X + 3
\]
An Illustrative Example VII

- Note that the reconstructed line is identical to the line used by the central authority!

- The intercept of the line $\ell'(X)$ on the Y-axis is $\tilde{s} = \ell'(X = 0) = 3$, which is identical to the secret shared by the central authority!
In the next lecture, we will see how to generalize this construction so that we can ensure that any t parties can recover the secret, and no $(t - 1)$ parties can recover the secret, where $t \in \{2, \ldots, p - 1\}$.