1. **RSA Assumption (5+12+5).** Consider RSA encryption scheme with parameters $N = 21 = 3 \times 7$.

 (a) Find $\varphi(N)$ and \mathbb{Z}^*_N.

 Solution:
(b) Use repeated squaring and complete the rows X, X^2, X^4 for all $X \in \mathbb{Z}_N^*$ as you have seen in the class (slides), that is, fill in the following table by adding as many columns as needed.

Solution.

\[
\begin{array}{cccccccccccc}
X & 1 & 2 & 4 & 5 & 8 & 10 & 11 & 13 & 16 & 17 & 19 & 20 \\
X^2 & & & & & & & & & & & & \\
X^4 & & & & & & & & & & & & \\
\end{array}
\]

(c) Find the row X^5 and show that X^5 is a bijection from \mathbb{Z}_N^* to \mathbb{Z}_N^*.

Solution.

\[
\begin{array}{cccccccccccc}
X & 1 & 2 & 4 & 5 & 8 & 10 & 11 & 13 & 16 & 17 & 19 & 20 \\
X^5 & & & & & & & & & & & & \\
\end{array}
\]
2. **Answer to the following questions (7+7+7+7):**

 (a) Compute the three least significant (decimal) digits of $1337011^{2046002}$ by hand.

 Solution.
(b) Is the following RSA signature scheme valid? (Justify your answer)

\[(r||m) = 33333, \sigma = 66666, N = 87155, e = 65537\]

Here, \(m\) denotes the message, and \(r\) denotes the randomness used to sign \(m\) and \(\sigma\) denotes the signature. Moreover, \((r||m)\) denotes the concatenation of \(r\) and \(m\). The signature algorithm \(Sign(m)\) returns \((r||m)^d \mod N\) where \(d\) is the inverse of \(e\) modulo \(\varphi(N)\). The verification algorithm \(Ver(m, \sigma)\) returns \((r||m) == \sigma^e \mod N\).

(Hint: Note that 5 is a factor of \(N = 87155\).)

Solution.
(c) Remember that in RSA encryption and signature schemes, $N = p \times q$ where p and q are two large primes. Show that in a RSA scheme (with public parameters N and e), if you know N and $\varphi(N)$, then you can find the factorization of N i.e. you can find p and q.

Solution.
(d) Consider an encryption scheme where $Enc(m) := m^e \mod N$ where e is a positive integer relatively prime to $\varphi(N)$ and $Dec(c) := c^d \mod N$ where d is the inverse of e modulo $\varphi(N)$. Show that in this encryption scheme, if you know the encryption of m_1 and the encryption of m_2, then you can find the encryption of $(m_1 \times m_2)^3$.

Solution.
Collaborators: