Lecture 22: RSA Encryption

Recall: RSA Assumption

- We pick two primes uniformly and independently at random $p, q \stackrel{\S}{\leftarrow} P_{n}$
- We define $N=p \cdot q$
- We shall work over the group $\left(\mathbb{Z}_{N}^{*}, \times\right)$, where \mathbb{Z}_{N}^{*} is the set of all natural numbers $<N$ that are relatively prime to N, and \times is integer multiplication $\bmod N$
- We pick $y \stackrel{\varsigma}{\leftarrow} \mathbb{Z}_{N}^{*}$
- Let $\varphi(N)$ represent the size of the set \mathbb{Z}_{N}^{*}, which is $(p-1)(q-1)$
- We pick any $e \in \mathbb{Z}_{\varphi(N)}^{*}$, that is, e is a natural number $<\varphi(N)$ and is relatively prime to $\varphi(N)$
- We give (n, N, e, y) to the adversary \mathcal{A} as ask her to find the e-th root of y, i.e., find x such that $x^{e}=y$
RSA Assumption. For any computationally bounded adversary, the above-mentioned problem is hard to solve

Recall: Properties

- The function $x^{e}: \mathbb{Z}_{N}^{*} \rightarrow \mathbb{Z}_{N}^{*}$ is a bijection for all e such that $\operatorname{gcd}(e, \varphi(N))=1$
- Given (n, N, e, y), where $y \stackrel{\Phi}{\leftarrow} \mathbb{Z}_{N}^{*}$, it is difficult for any computationally bounded adversary to compute the e-th root of y, i.e., the element $y^{1 / e}$
- But given d such that $e \cdot d=1 \bmod \varphi(N)$, it is easy to compute $y^{1 / e}$, because $y^{d}=y^{1 / e}$
Now, think how we can design a key-agreement scheme using these properties. Once the key-agreement protocol is ready, we can use a one-time pad to create an public-key encryption scheme.

Key-Agreement

First, Alice and Bob establish a key that is hidden from the adversary

Alice

 Bob$p, q \stackrel{\Phi}{\leftarrow} P_{n}$

$$
N=p \cdot q
$$

$$
\begin{gathered}
r \stackrel{\mathfrak{S}}{\leftarrow}_{\mathbb{Z}_{N}^{*} \stackrel{\mathrm{pk}=(n, N, e)}{\longleftrightarrow} \text { Pick any } e \in \mathbb{Z}_{\varphi(N)}^{*}}^{y=r^{e} \xrightarrow[r]{ }=y^{d}}
\end{gathered}
$$

Note that $r=\tilde{r}$ and is hidden from an adversary based on the RSA assumption

Public-key Encryption after the Key-Agreement Protocol

Using this key, Alice sends the encryption of $m \in \mathbb{Z}_{N}^{*}$ using the one-time pad encryption scheme.

$$
\begin{array}{cc}
\text { Alice } & \underline{\text { Bob }} \\
c=m \cdot r \longrightarrow \\
c & \tilde{m}=c \cdot \operatorname{inv}(\tilde{r})
\end{array}
$$

Since, we always have $r=\tilde{r}$, this encryption scheme always decrypts correctly. Note that $\operatorname{inv}(\widetilde{r})$ can be computed only by knowing $\varphi(N)$.

Alice
$p, q \stackrel{\$}{\leftarrow} P_{n}$

$$
N=p \cdot q
$$

$$
\begin{aligned}
& r \stackrel{\$}{\leftarrow} \mathbb{Z}_{N}^{*} \longleftarrow \mathrm{pk}^{\longleftarrow}=(n, N, e) \\
& y=r^{e}
\end{aligned}
$$

$$
c=m \cdot r \longrightarrow \tilde{r}=y^{d}
$$

$$
\widetilde{m}=c \cdot \operatorname{inv}(\widetilde{r})
$$

We emphasize that this encryption scheme work only for $m \in \mathbb{Z}_{N}^{*}$. In particular, this works for all messages m that have a binary representation of length less than n-bits, becuase p and q are n-bit primes.

HOWEVER, THIS SCHEME IS INSECURE

Insecurity of the First Attempt

- Let us start with a simpler problem.

Suppose I pick an integer x and give $y=x^{3}$ to you. Can you efficiently find the x ?

- Running for for loop with $i \in\{0, \ldots, y\}$ and testing whether $i^{3}=y$ or not is an inefficient solution
- However, binary search on the domain $\{0, \ldots, y\}$ is an efficient algorithm
- Then why does the RSA assumption that says "computing the e-th root is difficult if $\varphi(N)$ is unknown" hold? Answer: Because we are working over \mathbb{Z}_{N}^{*} and not \mathbb{Z} ! "Wrapping around" due to the modulus operation while cubing kills the binary search approach.
- However, if x is such that $x^{e}<N$ then the modulus operation does not take effect. So, if $x<N^{1 / e}$ then we can find the e-th root of y !
- Now, let us try to attack the "first attempt" algorithm
- Recall that we have $c=m \cdot r$ and $y=r$. So, we have $c^{e}=m^{e} \cdot r^{e}$. Now, note that $c^{e} \cdot \operatorname{inv}(y)=m^{e} \cdot r^{e} \cdot y^{-1}=m^{e}$.
- So, the adversary can compute $c^{e} \cdot \operatorname{inv}(y)$ to obtain m^{e}. If $m<N^{1 / e}$, then the adversary can use binary search to recover m.
- There is another problem! If Alice is encrypting and sending multiple messages $\left\{m_{1}, m_{2}, \ldots\right\}$, then the eavesdropper can recover $\left\{m_{1}^{e}, m_{2}^{e}, \ldots\right\}$. So, she can find which of these $\left\{m_{1}^{e}, m_{2}^{e}, \ldots\right\}$ are identical. In turn, she can find out the messages in $\left\{m_{1}, m_{2}, \ldots\right\}$ that are identical (because $x^{e}: \mathbb{Z}_{N}^{*} \rightarrow \mathbb{Z}_{N}^{*}$ is a bijection).
- How do we fix these attacks?

RSA Encryption

- Our idea is to pad the message m with some randomness s. The new message $s \| m$, with high probability, satisfies $(s \| m)^{e}>N$ (that is, it wraps around)
- How does it satisfy the second attack mentioned above (Think: Birthday bound)
- Let us write down the new encryption scheme for $m \in\{0,1\}^{n / 2}$
$\operatorname{Enc}_{n, N, e}(m)$:
(1) Pick $r \stackrel{\mathscr{S}}{\leftarrow} \mathbb{Z}_{N}^{*}$
(2) Pick $s \stackrel{\Phi}{\leftarrow}\{0,1\}^{n / 2}$
(3) Compute $y=r^{e}$, and $c=(s \| m) \cdot r$
(c) Return (y, c)

Final Optimized RSA Encryption

- Note that masking with r is not helping at all! Let us call $s \| m$ as the payload. An adversary can obtain the "e-th power of the payload" by computing $c^{e} \cdot y^{-1}$
- So, we can use the following optimized encryption algorithm instead
$\operatorname{Enc}_{n, N, e}(m)$:
(1) Pick $s \stackrel{\Phi}{\leftarrow}\{0,1\}^{n / 2}$
(2) Return $c=(s \| m)^{e}$

Looking Ahead: Implementing RSA

Let us summarize all the algorithms that we need to implement RSA algorithm
(1) Generating n-bit primes to sample p and q
(2) Generating e such that e is relatively prime to $\varphi(N)$, where $N=p q$
(3) Finding the trapdoor d such that $e \cdot d=1 \bmod \varphi(N)$

