Lecture 22: RSA Encryption
Recall: RSA Assumption

- We pick two primes uniformly and independently at random $p, q \leftarrow P_n$
- We define $N = p \cdot q$
- We shall work over the group (\mathbb{Z}_N^*, \times), where \mathbb{Z}_N^* is the set of all natural numbers $< N$ that are relatively prime to N, and \times is integer multiplication mod N
- We pick $y \leftarrow \mathbb{Z}_N^*$
- Let $\varphi(N)$ represent the size of the set \mathbb{Z}_N^*, which is $(p - 1)(q - 1)$
- We pick any $e \in \mathbb{Z}_{\varphi(N)}^*$, that is, e is a natural number $< \varphi(N)$ and is relatively prime to $\varphi(N)$
- We give (n, N, e, y) to the adversary A as ask her to find the e-th root of y, i.e., find x such that $x^e = y$

RSA Assumption. For any computationally bounded adversary, the above-mentioned problem is hard to solve
Recall: Properties

- The function $x^e : \mathbb{Z}_N^* \rightarrow \mathbb{Z}_N^*$ is a bijection for all e such that $\gcd(e, \varphi(N)) = 1$
- Given (n, N, e, y), where $y \leftarrow \mathbb{Z}_N^*$, it is difficult for any computationally bounded adversary to compute the e-th root of y, i.e., the element $y^{1/e}$
- But given d such that $e \cdot d = 1 \mod \varphi(N)$, it is easy to compute $y^{1/e}$, because $y^d = y^{1/e}$

Now, think how we can design a key-agreement scheme using these properties. Once the key-agreement protocol is ready, we can use a one-time pad to create an public-key encryption scheme.
Key-Agreement

First, Alice and Bob establish a key that is hidden from the adversary

\[
\begin{align*}
\text{Alice} & : & p, q & \overset{s}{\leftarrow} P_n \\
& & N & = p \cdot q \\
& & r & \overset{s}{\leftarrow} \mathbb{Z}_N^* \\
& & pk = (n, N, e) & \text{Pick any } e \in \mathbb{Z}_\varphi(N) \\
& & y & = r^e \\
& & \tilde{r} & = y^d
\end{align*}
\]

Note that \(r = \tilde{r} \) and is hidden from an adversary based on the RSA assumption.
Using this key, Alice sends the encryption of \(m \in \mathbb{Z}_N^* \) using the one-time pad encryption scheme.

\[
\begin{align*}
\text{Alice} & \quad c = m \cdot r \\
\text{Bob} & \quad c \rightarrow \tilde{m} = c \cdot \text{inv}(\tilde{r})
\end{align*}
\]

Since, we always have \(r = \tilde{r} \), this encryption scheme always decrypts correctly. Note that \(\text{inv}(\tilde{r}) \) can be computed only by knowing \(\varphi(N) \).
Alice

- \(p, q \leftarrow \mathbb{P}_n \)
- \(N = p \cdot q \)
- \(r \leftarrow \mathbb{Z}_N^* \)
- \(pk = (n, N, e) \)
- \(y = r^e \)
- \(c = m \cdot r \)

Bob

- Pick any \(e \in \mathbb{Z}_\varphi(N)^* \)
- \((y, c) \)
- \(\tilde{r} = y^d \)
- \(\tilde{m} = c \cdot \text{inv}(\tilde{r}) \)
We emphasize that this encryption scheme work only for $m \in \mathbb{Z}_N^\ast$. In particular, this works for all messages m that have a binary representation of length less than n-bits, because p and q are n-bit primes.

HOWEVER, THIS SCHEME IS INSECURE
Let us start with a simpler problem.

Suppose I pick an integer x and give $y = x^3$ to you. Can you efficiently find the x?

Running for for loop with $i \in \{0, \ldots, y\}$ and testing whether $i^3 = y$ or not is an inefficient solution.

However, binary search on the domain $\{0, \ldots, y\}$ is an efficient algorithm.

Then why does the RSA assumption that says “computing the e-th root is difficult if $\varphi(N)$ is unknown” hold? Answer: Because we are working over \mathbb{Z}_N^* and not \mathbb{Z}! “Wrapping around” due to the modulus operation while cubing kills the binary search approach.

However, if x is such that $x^e < N$ then the modulus operation does not take effect. So, if $x < N^{1/e}$ then we can find the e-th root of y!
Now, let us try to attack the “first attempt” algorithm

Recall that we have \(c = m \cdot r \) and \(y = r^e \). So, we have \(c^e = m^e \cdot r^e \). Now, note that \(c^e \cdot \text{inv}(y) = m^e \cdot r^e \cdot y^{-1} = m^e \).

So, the adversary can compute \(c^e \cdot \text{inv}(y) \) to obtain \(m^e \). If \(m < N^{1/e} \), then the adversary can use binary search to recover \(m \).

There is another problem! If Alice is encrypting and sending multiple messages \(\{m_1, m_2, \ldots\} \), then the eavesdropper can recover \(\{m_1^e, m_2^e, \ldots\} \). So, she can find which of these \(\{m_1^e, m_2^e, \ldots\} \) are identical. In turn, she can find out the messages in \(\{m_1, m_2, \ldots\} \) that are identical (because \(x^e : \mathbb{Z}_N^* \to \mathbb{Z}_N^* \) is a bijection).

How do we fix these attacks?
Our idea is to pad the message m with some randomness s. The new message $s \parallel m$, with high probability, satisfies $(s \parallel m)^e > N$ (that is, it wraps around).

How does it satisfy the second attack mentioned above (Think: Birthday bound)?

Let us write down the new encryption scheme for $m \in \{0, 1\}^{n/2}$

Enc_{n,N,e}(m):

1. Pick $r \leftarrow \mathbb{Z}_N^*$
2. Pick $s \leftarrow \{0, 1\}^{n/2}$
3. Compute $y = r^e$, and $c = (s \parallel m) \cdot r$
4. Return (y, c)
Note that masking with r is not helping at all! Let us call $s\|m$ as the payload. An adversary can obtain the “e-th power of the payload” by computing $c^e \cdot y^{-1}$.

So, we can use the following optimized encryption algorithm instead:

$\text{Enc}_{n,N,e}(m)$:

1. Pick $s \leftarrow \{0, 1\}^{n/2}$
2. Return $c = (s\|m)^e$
Let us summarize all the algorithms that we need to implement RSA algorithm

1. Generating \(n \)-bit primes to sample \(p \) and \(q \)
2. Generating \(e \) such that \(e \) is relatively prime to \(\varphi(N) \), where \(N = pq \)
3. Finding the trapdoor \(d \) such that \(e \cdot d \equiv 1 \pmod{\varphi(N)} \)