Lecture 11: Efficient Algorithms
In today’s lecture capital alphabets, for example, X, represents a natural number.

Further, the number of bits needed to present the number X is denoted by the corresponding small number x.
Note that the smallest integer X that requires n bits for binary representation has the binary representation $10\cdots0$. This represents the number $X = 2^{n-1}$.

Note that the largest integer X that can be expressed using n bits has binary representation $1\cdots1$. This represents the number $X = 2^n - 1$.

From these two observations, we can conclude that the number of bits needed to represent any number X is given by $x = \left\lceil \lg(X + 1) \right\rceil$.

Intuitive Summary: The number X requires $x = \lg X$ bits for its representation.
An efficient algorithm is an algorithm whose running time is polynomial in the size of the input.

For example, suppose an algorithm takes as input a prime P that needs $p = 1000$ bits to represent it. Note that the prime P is at least $2^{1000-1} = 2^{999}$, which is humongous (more than the number of atoms in the universe). Our algorithm’s running time should be polynomial in $p = 1000$, rather than the number $P \geq 2^{999}$.

We shall assume that all inputs are already provided in the binary representation.
Suppose we are given two numbers A and B. Our objective is to generate the binary representation of the sum of these two numbers.

Note that A needs $a = \lceil \lg(A + 1) \rceil$ and B needs $b = \lceil \lg(B + 1) \rceil$ bits for representation.
Naive Attempt.

Add(A, B):
- $\text{sum} = A$
- For $i = 1$ to B:
 - $\text{sum}+ = 1$
- Return sum

Note that the inner loop runs B times, which is at least 2^{b-1}, i.e., exponential in the input size. So, this algorithm is inefficient.
Efficient Addition Algorithm.

\[
\text{Add}(A, B):
\begin{align*}
&\cdot c = \max\{a, b\}, \text{ carry } = 0 \\
&\cdot \text{ For } i = 0 \text{ to } c - 1:
\begin{align*}
&\quad \cdot C_i = A_i + B_i + \text{ carry} \\
&\quad \cdot \text{ If } C_i \geq 2:
\begin{align*}
&\quad \quad \cdot \text{ carry } = 1 \\
&\quad \quad \cdot C_i = C_i \% 2
\end{align*}
\end{align*}
\end{align*}
\begin{align*}
&\quad \cdot \text{ Else: carry } = 0 \\
&\quad \cdot \text{ If carry } == 1:
\begin{align*}
&\quad \quad \cdot c+ = 1 \\
&\quad \quad \cdot C_{c-1} = 1
\end{align*}
\end{align*}
\begin{align*}
&\cdot \text{ Return } C_{c-1}C_{c-2} \ldots C_1C_0
\end{align*}
\]
The running time of this algorithm is $O(a + b)$, where $a = \log A$ and $b = \log B$. This algorithm is efficient!
Suppose we are given two numbers A and B. Our objective is to generate the binary representation of the product of these two numbers.

Our algorithm should have running time polynomial in $a = \lceil \log(A + 1) \rceil$ and $b = \lceil \log(B + 1) \rceil$.
Naive Attempt.

\[\text{Multiply}(A, B): \]
- \(\text{product} = 1 \)
- \(\text{For } i = 1 \text{ to } B: \)
 - \(\text{product} += A \)
- \(\text{Return } \text{product} \)

Note that the inner loop runs \(B \) times, which is at least \(2^{b-1} \), i.e., exponential in the input size. So, this algorithm is inefficient.
Efficient Addition Algorithm.

Multiply\((A, B)\):
\[
\begin{align*}
&\text{to_add} = A \\
&\text{remains} = B \\
&\text{product} = 0 \\
\text{While remains} > 0: \\
&\quad \text{If remains}\&1 = 1: \text{product} + = \text{to_add} \\
&\quad \text{to_add} = \text{to_add} \ll 1 \\
&\quad \text{remains} = \text{remains} \gg 1 \\
\end{align*}
\]

Return product

The running time of this algorithm is \(O((a + b)^2)\), where \(a = \log A\) and \(b = \log B\). This algorithm is efficient!
Multiplication IV

- **Additional Reading.** Read Fast Fourier Transform for even faster multiplication algorithms!
Students are encouraged to write the pseudocode of an efficient division algorithm that takes as input integers A and B and outputs integers M and R such that

1. $B = M \cdot A + R$, and
2. $R \in \{0, \ldots, A - 1\}$
Our objective is to find the greatest common divisor \(G \) of two input integers \(A \) and \(B \).

Note that if we iterate over all integers \(\{1, \ldots, A\} \) to find the largest integer that divides \(B \), then this algorithm has a loop that runs \(A \) times, that is, it is exponential in the input length.

So, we use Euclid’s GCD algorithm. Let \(R \) be the remainder of dividing \(B \) by \(A \). If \(R = 0 \), then \(A \) is the GCD of \(A \) and \(B \). Otherwise, it recursively returns the gcd\((R, A)\). This algorithm is based on the observation that

\[
gcd(A, B) = gcd(R, A)
\]

Students are encouraged to prove this statement.
Euclid’s GCD Algorithm.

\[
\text{GCD}(A, B) \\
\begin{align*}
& \quad R = B \% A \\
\text{While } & \quad R > 0 : \\
& \quad B = A \\
& \quad A = R \\
& \quad R = B \% A \\
\end{align*} \\
\text{Return } & \quad A
\]

Exercise. Prove that this is an efficient algorithm.
The following code generates a random number in the range
$[2^{n-1}, 2^n - 1]$

```
Random(n):
  C = 1
  For i = 1 to (n - 1):
    r ← {0, 1}
    C = (C ≪ 1) | r
```

It is easy to see that this is an efficient algorithm
Assume that there exists an efficient algorithm Is_Prime(N) that tests whether the integer N is a prime or not. In the future, we shall see one such algorithm.

Consider the following code

```python
Prime(n):
  While true :
    P = Random(n)
    If Is_Prime(P) : Return P
```

The efficiency of the above algorithm depends on the number of times the while-loop runs, which depends on the number of primes in the range \([2^{n-1}, 2^n - 1]\)
Generate a Random n-bit Prime II

- We shall rely on the density of prime numbers to understand the running time of the algorithm mentioned above.

Theorem (Prime Number Theorem)

There are (roughly) $\frac{N}{\log N}$ prime numbers $< N$

- So, there are roughly $\frac{2^n}{n}$ prime numbers $< 2^n$. Similarly, there are roughly $\frac{2^{n-1}}{n-1}$ prime numbers $< 2^{n-1}$. So, in the range $[2^{n-1}, 2^n - 1]$, the number of primes is (roughly)

$$\frac{2^n}{n} - \frac{2^{n-1}}{n-1} = 2^{n-1} \left(\frac{2}{n} - \frac{1}{n-1} \right) \approx 2^{n-1} \frac{1}{n}$$

- The range $[2^{n-1}, 2^n - 1]$ has a total of 2^{n-1} numbers.
So, the probability that a random number picked from this range is a prime number is (roughly)

\[
\frac{2^{n-1} \cdot \frac{1}{n}}{2^{n-1}} = \frac{1}{n}
\]

Intuitively, if we run the inner-loop \(n \) times, then we expect to encounter one prime number. We shall make this more formal in the next class.

I want to emphasize that if the density of the primes was not \(1/\text{poly}(n) \), then the algorithm presented above will not be efficient. We are extremely fortunate that primes are so dense!