Lecture 06: Private-key Encryption
(Definition & Security of One-time Pad)
● First, we shall define the correctness and the security of private-key encryption schemes

● We shall argue that the one-time pad is correct and secure
Three algorithms

- Key Generation: Generate the secret key sk
- Encryption: Given the secret key sk and a message m, it outputs the cipher-text c (Note that the encryption algorithm can be a randomized algorithm)
- Decryption: Given the secret key sk and the cipher-text c, it outputs a message m' (Note that the decryption algorithm can be a randomized algorithm)
Story of the Private-key Encryption Process

- Yesterday Alice and Bob met and generated a secret key $sk \sim \text{Gen}()$
 - Read as: the secret key sk is sampled according to the distribution $\text{Gen}()$
- Today Alice wants to encrypt a message m using the secret key sk. Alice encrypts $c \sim \text{Enc}_{sk}(m)$
 - Read as: the cipher-text c is sampled according to the distribution $\text{Enc}_{sk}(m)$
- Then Alice sends the cipher-text c to Bob. An eavesdropper gets to see the cipher-text c
- After receiving the cipher-text c Bob decrypts it using the secret key sk. Bob decrypts $m' \sim \text{Dec}_{sk}(c)$
 - Read as: the decoded message m' is sampled according to the distribution $\text{Dec}_{sk}(c)$
Correctness

- We want the decoded message obtained by Bob to be identical to the original message of Alice with high probability.
- We insist
 \[P [M = M'] = 1 \]

- Recall we use capital alphabets to represent the random variable corresponding to the variable (so, M is the random variable for the message encoded by Alice and M' is the random variable for the message recovered by Bob).
We want to say that the cipher-text c provides the adversary no additional information about the message.

We insist that, for all message m, we have

$$P[M = m | C = c] = P[M = m]$$
Cropping any Constraint makes the Problem Trivial

- Suppose we insist only on correctness and not on security
 - The trivial scheme where $\text{Enc}_{sk}(m) = m$, i.e. the encryption of any message m using any secret key sk is the message itself, satisfies correctness. But is completely insecure!

- Suppose we insist only on security and not on correctness
 - The trivial scheme where $\text{Enc}_{sk}(m) = 0$, i.e. the encryption of any message m using any secret key sk is 0, satisfies this security. But Bob cannot correctly recover the original message m with certainty!

- So, the non-triviality is to simultaneously achieve correctness and security
One-time Pad

- Let \((G, \circ)\) be a group
- **Secret-key Generation:**

 \[
 \text{Gen}() : \\
 \quad \text{Return } sk \leftarrow^$ G
 \]
- **Encryption:**

 \[
 \text{Enc}_{sk}(m) : \\
 \quad \text{Return } c := m \circ sk
 \]
- **Decryption:**

 \[
 \text{Dec}_{sk}(c) : \\
 \quad \text{Return } m' := c \circ \text{inv}(sk)
 \]
- Note that Encryption and Decryption is deterministic
- The only randomized step is the choice of sk during the secret-key generation algorithm
Correctness of One-time Pad

- It is trivial to see that

\[P[M = M'] = 1 \]

- So, one-time pad is correct!
Security of One-time Pad I

We want to simplify the probability

\[P[M = m | C = c] \]

Using Bayes’ Rule, we have

\[= \frac{P[M = m, C = c]}{P[C = c]} \]

Using the fact that \(P[C = c] = \sum_{x \in G} P[M = x, C = c] \), we get

\[= \frac{P[M = m, C = c]}{\sum_{x \in G} P[M = x, C = c]} \]
We will prove the following claim later

Claim

For any $x, y \in G$, we have

\[
P[M = x, C = y] = P[M = x] \cdot \frac{1}{|G|}
\]

Using this claim, we can simplify the expression as

\[
\frac{P[M = m]}{\sum_{x \in G} P[M = x]} \cdot \frac{1}{|G|}
\]

\[
= \frac{P[M = m]}{\sum_{x \in G} P[M = x]}
\]
Using the fact that $\sum_{x \in G} P[M = x] = 1$, we get that the previous expression is

$$= P[M = m]$$

This proves that $P[M = m|C = c] = P[M = m]$, for all m and c. This proves that the one-time pad encryption scheme is secure!
Proof of Claim 1

- You will prove the following statement in the homework: If there exists \(sk \) such that \(x \circ sk = y \) then \(sk \) is unique (i.e., there does not exist \(sk' \neq sk \) such that \(x \circ sk' = y \)).

- Using this result, we get the following. Suppose \(z \in G \) be the unique element such that \(x \circ z = y \). Then we have:

\[
P[M = x, C = y] = P[M = x, SK = z]
\]

- Note that the secret-key is sample independent of the message \(x \). So, we have

\[
P[M = x, SK = z] = P[M = x] \cdot P[SK = z]
\]

- Note that \(sk \) is sampled uniformly at random from the set \(G \). So, we have

\[
P[M = x, SK = z] = P[M = x] \cdot \frac{1}{|G|}
\]
Encrypting bit messages

Consider \((G, \circ) = (\mathbb{Z}_2, + \mod 2)\)
Encrypting n-bit strings

- Consider $G = \{0, 1\}^n$
- Define $(x_1, \ldots, x_n) \circ (y_1, \ldots, y_n) = (x_1 + y_1 \mod 2, \ldots, x_n + y_n \mod 2)$
Example III

Encrypting an alphabet

- Consider $G = \mathbb{Z}_{26}$
- Define \circ as $+ \mod 26$

You will construct one more scheme in the homework by interpreting the set of alphabets as \mathbb{Z}_{27}^*
Example IV

- Encrypting n-alphabet words
 - Consider $G = \mathbb{Z}_{26}^n$
 - Define \circ as the coordinate-wise $+ \mod 26$