Homework 6

1. **RSA Assumption (5+12+5)**. Consider RSA encryption scheme with parameters $N = 35 = 5 \times 7$.

 (a) Find $\varphi(N)$ and \mathbb{Z}_N^*.

 (b) Use repeated squaring and complete the rows X, X^2, X^4 for all $X \in \mathbb{Z}_N^*$ as you have seen in the class (slides), that is, fill in the following table by adding as many columns as needed.

 Solution.

<table>
<thead>
<tr>
<th>X</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>9</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>16</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>X^2</td>
<td></td>
</tr>
<tr>
<td>X^4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>18</th>
<th>19</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>26</th>
<th>27</th>
<th>29</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td>X^2</td>
<td></td>
</tr>
<tr>
<td>X^4</td>
<td></td>
</tr>
</tbody>
</table>
(c) Find the row X^5 and show that X^5 is a bijection from \mathbb{Z}^*_N to \mathbb{Z}^*_N.

Solution.

\[
\begin{array}{cccccccccccc}
X & 1 & 2 & 3 & 4 & 6 & 8 & 9 & 11 & 12 & 13 & 16 & 17 \\
X^4 & & & & & & & & & & & & \\
X^5 & & & & & & & & & & & & \\
\end{array}
\]

\[
\begin{array}{cccccccccccc}
X & 18 & 19 & 22 & 23 & 24 & 26 & 27 & 29 & 31 & 32 & 33 & 34 \\
X^4 & & & & & & & & & & & & \\
X^5 & & & & & & & & & & & & \\
\end{array}
\]
2. Answer the following questions (7+7+7+7 points):

 (a) (7 points) Compute the three least significant (decimal) digits of $6251007^{1960404}$ by hand. Explain your logic.

 Solution.
(b) (7 points) Is the following RSA signature scheme valid? (Justify your answer)

\[(r||m) = 24, \sigma = 196, N = 1165, e = 43\]

Here, \(m\) denotes the message, and \(r\) denotes the randomness used to sign \(m\) and \(\sigma\) denotes the signature. Moreover, \((r||m)\) denotes the concatenation of \(r\) and \(m\).

The signature algorithm \(\text{Sign}(m)\) returns \((r||m)^d \mod N\) where \(d\) is the inverse of \(e\) modulo \(\varphi(N)\). The verification algorithm \(\text{Ver}(m, \sigma)\) returns \(\frac{(r||m) \equiv \sigma^e \mod N}{\text{Solution}}\).
(c) (7 points) Remember that in RSA encryption and signature schemes, \(N = p \times q \) where \(p \) and \(q \) are two large primes. Show that in a RSA scheme (with public parameters \(N \) and \(e \)), if you know \(N \) and \(\varphi(N) \), then you can efficiently factorize \(N \) i.e. you can recover \(p \) and \(q \).

Solution.

(d) (7 points) Consider an encryption scheme where \(Enc(m) := m^e \mod N \) where \(e \) is a positive integer relatively prime to \(\varphi(N) \) and \(Dec(c) := c^d \mod N \) where \(d \) is the inverse of \(e \) modulo \(\varphi(N) \). Show that in this encryption scheme, if you know the encryption of \(m_1 \) and the encryption of \(m_2 \), then you can find the encryption of \((m_1 \times m_2)^5 \).

Solution.
(e) (7 points) Suppose $n = 11413 = 101 \cdot 113$, where 101 and 113 are primes. Let $e_1 = 8765$ and $e_2 = 7653$.

 i. (2 points) Only one of the two exponents e_1, e_2 is a valid RSA encryption key, which one?

 ii. (3 points) For the valid encryption key, compute the corresponding decryption key d.

 iii. (2 points) Decrypt the cipher text $c = 3233$.

3. Euler Phi Function (30 points)

(a) (10 points) Let $N = p_1^{e_1} \cdot p_2^{e_2} \cdots p_t^{e_t}$ represent the unique prime factorization of a natural number N, where $p_1 < p_2 < \cdots < p_t$ are prime numbers and e_1, e_2, \ldots, e_t are natural numbers. Let $\mathbb{Z}_N^* = \{ x : 0 \leq x < N - 1, \gcd(x, N) = 1 \}$ and $\phi(N) = |\mathbb{Z}_N^*|$. Using the inclusion exclusion principle, prove that

$$
\phi(N) = N \cdot \left(1 - \frac{1}{p_1}\right) \cdot \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_t}\right).
$$

Solution.
(b) (5 points) For any $x \in \mathbb{Z}_N^*$, prove that

$$x^{\phi(N)} = 1 \mod N.$$

Hint: Consider the subgroup generated by x.

Solution.
(c) **Replacing** $\phi(N)$ **with** $\frac{\phi(N)}{2}$ **in RSA.** (15 points)

In RSA, we pick the exponent e and the decryption key d from the set $\mathbb{Z}_{\phi(N)}^*$. This problem shall show that we can choose $e, d \in \mathbb{Z}_{\phi(N)/2}^*$ instead.

Let p, q be two distinct odd primes and define $N = pq$.

i. (2 points) For any $e \in \mathbb{Z}_{\phi(N)/2}^*$, prove that $x^e : \mathbb{Z}_N^* \rightarrow \mathbb{Z}_N^*$ is a bijection.

ii. (7 points) Consider any $x \in \mathbb{Z}_N^*$. Prove that $x^{\frac{\phi(N)}{2}} = 1 \mod p$ and $x^{\frac{\phi(N)}{2}} = 1 \mod q$.

iii. (3 points) Consider any $x \in \mathbb{Z}_N^*$. Prove that $x^{\frac{\phi(N)}{2}} = 1 \mod N$.

iv. (3 points) Suppose e, d are integers that $e \cdot d = 1 \mod \frac{\phi(N)}{2}$. Show that $(x^e)^d = x \mod N$, for any $x \in \mathbb{Z}_N^*$.

4. **Understanding hardness of the Discrete Logarithm Problem.** (15 points)

Suppose \((G, \circ)\) is a group of order \(N\) generated by \(g \in G\). Suppose there is an algorithm \(A_{DL}\) that, when given input \(X \in G\), it outputs \(x \in \{0, 1, \ldots, N - 1\}\) such that \(g^x = X\) with probability \(p_X\).

Think of it this way: The algorithm \(A_{DL}\) solves the discrete logarithm problem; however, for different inputs \(X \in G\), its success probability \(p_X\) may be different.

Let \(p = \frac{\sum_{X \in G} p_X}{N}\) represent the average success probability of \(A_{DL}\) solving the discrete logarithm problem when \(X\) is chosen uniformly at random from \(G\).

Construct a new algorithm \(B\) that takes any \(X \in G\) as input and outputs \(x \in \{0, 1, \ldots, N - 1\}\) (by making one call to the algorithm \(A_{DL}\)) such that \(g^x = X\) with probability \(p\). This new algorithm that you construct shall solve the discrete logarithm problem for every \(X \in G\) with the same probability \(p\).

(Remark: Intuitively, this result shows that solving the discrete logarithm problem for any \(X \in G\) is no harder than solving the discrete logarithm problem for a random \(X \in G\).)
5. **Concatenating a random bit string before a message.** (15 points)

Let \(m \in \{0,1\}^a \) be an arbitrary message. Define the set

\[
S_m = \{(r \parallel m): r \in \{0,1\}^b\}.
\]

Let \(p \) be an odd prime. Recall that in RSA encryption algorithm, we encrypted a message \(y \) chosen uniformly at random from this set \(S_m \).

Prove the following

\[
\Pr_{y \leftarrow S_m} [p \text{ divides } y] \leq 2^{-b} \cdot \left\lceil \frac{2^b}{p} \right\rceil.
\]

(Remark: This bound is tight as well. There exists \(m \) such that equality is achieved in the probability expression above. Intuitively, this result shows that the message \(y \) will be relatively prime to \(p \) with probability (roughly) \(1 - 1/p \).)
6. Challenging: Inverting exponentiation function. (20 points)

Fix $N = pq$, where p and q are distinct odd primes. Let e be a natural number such that $\gcd(e, \phi(N)) = 1$. Suppose there is an adversary \mathcal{A} running in time T such that

$$\Pr[\mathcal{A}([x^e \mod N]) = x] = 0.01$$

for x chosen uniformly at random from \mathbb{Z}_N^*. Intuitively, this algorithm successfully finds the e-th root with probability 0.01, for a random x.

For any $\varepsilon \in (0, 1)$, construct an adversary \mathcal{B}_ε (which, possibly, makes multiple calls to the adversary \mathcal{A}) such that

$$\Pr[\mathcal{B}_\varepsilon([x^e \mod N]) = x] = 1 - \varepsilon,$$

for every $x \in \mathbb{Z}_N^*$. The algorithm \mathcal{B}_ε should have running time polynomial in $T, \log N$, and $\log 1/\varepsilon$.
Collaborators: