Lecture 02: Mathematical Basics (Probability)
Probability Basics

- Sample Space: Ω is a set of outcomes (it can either be finite or infinite)
- Random Variable: X is a random variable that assigns probabilities to outcomes

Example: Let $\Omega = \{\text{Heads, Tails}\}$. Let X be a random variable that outputs Heads with probability $1/3$ and outputs Tails with probability $2/3$

- The probability that X assigns to the outcome x is represented by $P[X = x]$

Example: In the ongoing example $P[X = \text{Heads}] = 1/3$.
Let $f: \Omega \rightarrow \Omega'$ be a function

Let X be a random variable over the sample space Ω

We define a new random variable $f(X)$ is over Ω' as follows

$$P[f(X) = y] = \sum_{x \in \Omega: f(x) = y} P[X = x]$$
Suppose \((X_1, X_2)\) is a random variable over \(\Omega_1 \times \Omega_2\).

Intuitively, the random variable \((X_1, X_2)\) takes values of the form \((x_1, x_2)\), where the first coordinate lies in \(\Omega_1\), and the second coordinate lies in \(\Omega_2\).

For example, let \((X_1, X_2)\) represent the temperatures of West Lafayette and Lafayette. Their sample space is \(\mathbb{Z} \times \mathbb{Z}\). Note that these two outcomes can be correlated with each other.
Let $P_1 : \Omega_1 \times \Omega_2 \to \Omega_1$ be the function $P_1(x_1, x_2) = x_1$ (the projection operator).

So, the random variable $P_1(X_1, X_2)$ is a probability distribution over the sample space Ω_1.

This is represented simply as X_1, the marginal distribution of the first coordinate.

Similarly, we can define X_2.

Conditional Distribution

Let \((X_1, X_2)\) be a joint distribution over the sample space \(\Omega_1 \times \Omega_2\).

We can define the distribution \((X_1 | X_2 = x_2)\) as follows:

- This random variable is a distribution over the sample space \(\Omega_1\).
- The probability distribution is defined as follows:

\[
P[X_1 = x_1 | X_2 = x_2] = \frac{P[X_1 = x_1, X_2 = x_2]}{\sum_{x \in \Omega_1} P[X_1 = x, X_2 = x_2]}
\]

For example, conditioned on the temperature at Lafayette being 0, what is the conditional probability distribution of the temperature in West Lafayette?
Theorem (Bayes’ Rule)

Let \((X_1, X_2)\) be a joint distribution over the sample space \((\Omega_1, \Omega_2)\). Let \(x_1 \in \Omega_1\) and \(x_2 \in \Omega_2\) be such that \(P[X_1 = x_1, X_2 = x_2] > 0\). Then, the following holds.

\[
P[X_1 = x_1 | X_2 = x_2] = \frac{P[X_1 = x_1, X_2 = x_2]}{P[X_2 = x_2]}
\]

The random variables \(X_1\) and \(X_2\) are independent of each other if the distribution \((X_1 | X_2 = x_2)\) is identical to the random variable \(X_1\), for all \(x_2 \in \Omega_2\) such that \(P[X_2 = x_2] > 0\)
We can generalize the Bayes’ Rule as follows.

Theorem (Chain Rule)

Let \((X_1, X_2, \ldots, X_n) \) be a joint distribution over the sample space \(\Omega_1 \times \Omega_2 \times \cdots \times \Omega_n \). For any \((x_1, \ldots, x_n) \in \Omega_1 \times \cdots \times \Omega_n \) we have

\[
P [X_1 = x_1, \ldots, X_n = x_n] = \prod_{i=1}^{n} P [X_i = x_i \mid X_{i-1} = x_{i-1}, \ldots, X_1 = x_1]
\]
In which context do we foresee to use the Bayes’ Rule to compute joint probability?

- Sometimes, the problem at hand will clearly state how to sample X_1 and then, conditioned on the fact that $X_1 = x_1$, it will state how to sample X_2. In such cases, we shall use the Bayes’ rule to calculate

\[
P[X_1 = x_1, X_2 = x_2] = P[X_1 = x_1] P[X_2 = x_2 | X_1 = x_1]
\]

- Let us consider an example.
 - Suppose X_1 is a random variable over $\Omega_1 = \{0, 1\}$ such that $P[X_1 = 0] = 1/2$. Next, the random variable X_2 is over $\Omega_2 = \{0, 1\}$ such that $P[X_2 = x_1 | X_1 = x_1] = 2/3$. Note that X_2 is biased towards the outcome of X_1.
 - What is the probability that we get $P[X_1 = 0, X_2 = 1]$?
To compute this probability, we shall use the Bayes’ rule.

\[P[X_1 = 0] = 1/2 \]

Next, we know that

\[P[X_2 = 0|X_1 = 0] = 2/3 \]

Therefore, we have \[P[X_2 = 1|X_1 = 0] = 1/3. \] So, we get

\[P[X_1 = 0, X_2 = 1] = P[X_1 = 0] P[X_2 = 1|X_1 = 0] \]
\[= (1/2) \cdot (1/3) = 1/6 \]
Independence of Random Variables

- Consider a joint distribution \((X_1, X_2)\) over the sample space \(\Omega_1 \times \Omega_2\).
- The marginal distributions \(X_1\) and \(X_2\) are independent of each other, if for all \(x_1 \in \Omega_1\) and \(x_2 \in \Omega_2\) we have: If \(\mathbb{P}[X_1 = x_1] > 0\) then
 \[
 \mathbb{P}[X_2 = x_2] = \mathbb{P}[X_2 = x_2 | X_1 = x_1].
 \]
- Equivalently, the following condition is satisfied
 \[
 \mathbb{P}[X_1 = x_1] \cdot \mathbb{P}[X_2 = x_2] = \mathbb{P}[X_1 = x_1, X_2 = x_2].
 \]
Let S be the random variable representing whether I studied for my exam. This random variable has sample space $\Omega_1 = \{Y, N\}$

Let P be the random variable representing whether I passed my exam. This random variable has sample space $\Omega_2 = \{Y, N\}$

Our sample space is $\Omega = \Omega_1 \times \Omega_2$

The joint distribution (S, P) is represented in the next page
Probability: First Example II

\[
P(S = s, P = p)
\]

<table>
<thead>
<tr>
<th>(s)</th>
<th>(p)</th>
<th>(P[S = s, P = p])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Y</td>
<td>1/2</td>
</tr>
<tr>
<td>Y</td>
<td>N</td>
<td>1/4</td>
</tr>
<tr>
<td>N</td>
<td>Y</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>N</td>
<td>1/4</td>
</tr>
</tbody>
</table>
Here are some interesting probability computations

The probability that I pass.

\[
= 1/2 + 0 = 1/2
\]
The probability that I study.

\[
= 1/2 + 1/4 = 3/4
\]
The probability that I pass conditioned on the fact that I studied.

\[
P[P = Y \mid S = Y] = \frac{P[P = Y, S = Y]}{P[S = Y]} = \frac{1/2}{3/4} = \frac{2}{3}
\]
Let T be the time of the day that I wake up. The random variable T has sample space $\Omega_1 = \{4, 5, 6, 7, 8, 9, 10\}$

Let B represent whether I have breakfast or not. The random variable B has sample space $\Omega_2 = \{T, F\}$

Our sample space is $\Omega = \Omega_1 \times \Omega_2$

The joint distribution of (T, B) is presented on the next page
Probability: Second Example II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>$\mathbb{P}[T=t, B=b]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>T</td>
<td>0.03</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>0.02</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>T</td>
<td>0.30</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>0.05</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>0.20</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>0.10</td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>0.10</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>0.08</td>
</tr>
<tr>
<td>9</td>
<td>T</td>
<td>0.05</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>0.05</td>
</tr>
<tr>
<td>10</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>0.02</td>
</tr>
</tbody>
</table>
What is the probability that I have breakfast conditioned on the fact that I wake up at or before 7?

Formally, what is $P[B = T \mid T \leq 7]$?