Homework 6

1. RSA Assumption $(\mathbf{5}+\mathbf{1 2 + 5})$. Consider RSA encryption scheme with parameters $N=35=5 \times 7$.
(a) Find $\varphi(N)$ and \mathbb{Z}_{N}^{*}.
(b) Use repeated squaring and complete the rows X, X^{2}, X^{4} for all $X \in \mathbb{Z}_{N}^{*}$ as you have seen in the class (slides), that is, fill in the following table by adding as many columns as needed.
Solution.

X										
X^{2}										
X^{4}										

X											
X^{2}											
X^{4}											

(c) Find the row X^{5} and show that X^{5} is a bijection from \mathbb{Z}_{N}^{*} to \mathbb{Z}_{N}^{*}. Solution.

X										
X^{4}										

X										$\|l\| l \mid$
X^{4}										
X^{5}										

2. Answer to the following questions $(\mathbf{7}+\mathbf{7}+\mathbf{7}+\mathbf{7})$:
(a) Compute the three least significant (decimal) digits of $6251007^{1960404}$ by hand. Solution.
(b) Is the following RSA signature scheme valid?(Justify your answer) $(r \| m)=24, \sigma=196, N=1165, e=43$
Here, m denotes the message, and r denotes the randomness used to sign m and σ denotes the signature. Moreover, $(r \| m)$ denotes the concatenation of r and m. The signature algorithm $\operatorname{Sign}(m)$ returns $(r \| m)^{d} \bmod N$ where d is the inverse of e modulo $\varphi(N)$. The verification algorithm $\operatorname{Ver}(m, \sigma)$ returns $\left((r \| m)==\sigma^{e}\right.$ $\bmod N$).
Solution.
(c) Remember that in RSA encryption and signature schemes, $N=p \times q$ where p and q are two large primes. Show that in a RSA scheme (with public parameters N and e), if you know N and $\varphi(N)$, then you can find the factorization of N i.e. you can find p and q.

Solution.

(d) Consider an encryption scheme where $\operatorname{Enc}(m):=m^{e} \bmod N$ where e is a positive integer relatively prime to $\varphi(N)$ and $\operatorname{Dec}(c):=c^{d} \bmod N$ where d is the inverse of e modulo $\varphi(N)$. Show that in this encryption scheme, if you know the encryption of m_{1} and the encryption of m_{2}, then you can find the encryption of $\left(m_{1} \times m_{2}\right)^{5}$.
Solution.
3. Programming Assignment: Compute the Cube Root of a Large Integer. (50 points)
This problem requires you to find the cube-root of very large perfect cube integers (each number is roughly 30 K bits in binary representation). The inputs shall be given using a text file inputs.txt containing five (roughly) 30K-bit numbers in binary representation. These numbers are separated by a new line character. Your program must output the cube roots of the five numbers, represented as binary and separated by a new line character, to a text file named as outputs.txt. Make sure that you follow the conventions, otherwise you will get zero credit. You can use Java, Python, C, or SageMath. Turn in your code and the output file via Gradescope.

Collaborators :

