Lecture 18: Pseudorandom Functions

Pseudo-random Functions (PRF)

- Let $\mathcal{G}_{m,n,k} = \{g_1, g_2, \dots, g_{2^k}\}$ be a set of functions such that each $g_i \colon \{0,1\}^m \to \{0,1\}^n$
- This set of functions $\mathcal{G}_{m,n,k}$ is called a pseudo-random function if the following holds.
 - Suppose we pick $g \stackrel{\$}{\leftarrow} \mathcal{G}_{m,n,k}$. Let $x_1,\ldots,x_t \in \{0,1\}^m$ be distinct inputs. Given $(x_1,g(x_1)),\ldots,(x_{t-1},g(x_{t-1}))$ for any computationally bounded party the value $g(x_t)$ appears to be uniformly random over $\{0,1\}^n$

Secret-key Encryption using Pseudo-Random Functions

Before we construct a PRF, let us consider the following secret-key encryption scheme.

- Gen(): Return $sk = id \stackrel{\$}{\leftarrow} \{1, \dots, 2^k\}$
- ② Enc_{id}(m): Pick a random $r \leftarrow \{0,1\}^m$. Return $(m \oplus g_{id}(r), r)$, where $m \in \{0,1\}^n$.
- **3** $\operatorname{Dec}_{\operatorname{id}}(\widetilde{c},\widetilde{r})$: Return $\widetilde{c} \oplus g_{\operatorname{id}}(\widetilde{r})$.

Features. Suppose the messages m_1, \ldots, m_u are encrypted as the cipher-texts $(c_1, r_1), \ldots, (c_u, r_u)$.

- As long as the r_1, \ldots, r_u are all distinct, each one-time pad $g_{id}(r_1), \ldots, g_{id}(r_u)$ appear uniform and independent of others to computationally bounded adversaries. So, this encryption scheme is secure against computationally bounded adversaries!
- The probability that any two of the randomness in r_1, \ldots, r_u are not distinct is very small (We shall prove this later as "Birthday Paradox")
- This scheme is a "state-less" encryption scheme. Alice and Bob do not need to remember any private state (except the secret-key sk)!

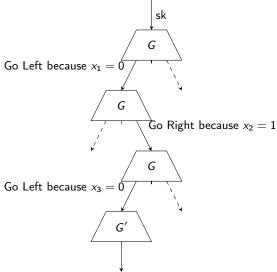
Construction of PRF I

- We shall consider the construction of Goldreich-Goldwasser-Micali (GGM) construction.
- Let $G: \{0,1\}^k \to \{0,1\}^{2k}$ be a PRG. We define $G(x) = (G_0(x), G_1(x))$, where $G_0, G_1: \{0,1\}^k \to \{0,1\}^k$
- Let $G': \{0,1\}^k \to \{0,1\}^n$ be a PRG
- We define $g_{id}(x_1x_2...x_m)$ as follows

$$G'\left(G_{x_m}(\cdots G_{x_2}(G_{x_1}(\mathsf{id}))\cdots)\right)$$

Construction of PRF II

Consider the execution for $x = x_1x_2x_3 = 010$. Output z is computed as follows.



We give the pseudocode of algorithms to construct PRG and PRF using a OWP $f\colon\{0,1\}^{k/2}\to\{0,1\}^{k/2}$

- Suppose $f: \{0,1\}^{k/2} \to \{0,1\}^{k/2}$ is a OWP
- We provide the pseudocode of a PRG $G: \{0,1\}^k \to \{0,1\}^t$, for any integer t, using the one-bit extension PRG construction of Goldreich-Levin hardcore predicate construction. Given input $s \in \{0,1\}^k$, it outputs G(s).

G(k, t, s):

- ① Interpret s = (r, x), where $r, x \in \{0, 1\}^{k/2}$
- ② Initialize bits = [] (i.e., an empty list)
- Initialize z = x
- **4** For i = 1 to t:
 - **1** bits.append($\langle r, z \rangle$), here $\langle \cdot, \cdot \rangle$ is the inner-product
 - z = f(z)
- Return bits

• We provide the pseudocode of the PRF $g_{id}: \{0,1\}^m \to \{0,1\}^n$, where $id \in \{0,1\}^k$, using the GGM construction. Given input $x \in \{0,1\}^m$, it outputs $g_{id}(x)$.

g(m, n, k, id, x):

- ① Interpret $x = x_1 x_2 \dots x_m$, where $x_1, \dots, x_m \in \{0, 1\}$
- 2 Initialize inp = id
- **3** For i = 1 to m:
 - **1** Let y = G(k, 2k, inp)
 - ② If $x_i = 0$, then inp is the first k bits of y. Otherwise (if $x_i = 1$), inp is the last k bits of y.
- **3** Return G(k, n, inp)