

Random Functions

o Let F, , be the set of all function from the domain {0,1}" to
the range {0,1}"

e Each function f € F,, , can be uniquely represented by a list
of length {0,1}" where the i-th entry in the list is the entry
f(i), for i € {0,1}"

@ So, each entry in the list has 2" options. And, there are a total
of 2™ such entries. So, the total number of distinct functions
from the set {0,1}™ — {0,1}" is

2M_-times
-

(2") x- -+ x (2") = 2m2"

@ So, we can conclude that each function f € Fp, , can be
described using n2™ bits

Random Functions

Crucial Property of Random Functions

Intuition.
@ Suppose we pick a random f é}"m,,,
@ Then the evaluation of f at any input x; is uniformly random
over {0,1}".
@ Further, the evaluation of f at any other input x> given f(x;)
is again uniformly random over {0,1}".
@ In particular, the evaluation of f at an input x; given
f(x1),...,f(x¢—1) is uniformly random
@ Intuitively, the evaluation of a random f is completely
unpredictable at any new input
Formally. For any distinct inputs xi,...,x; € {0,1}" and any
outputs yi,...,y: € {0,1}", the following holds

1

P s [F(xe) = yelf(x1) = y1, .o, F(xem1) = ye1] = >

f<Fmn

Random Functions

Secret-key Encryption using Random Functions

Consider the following private-key encryption scheme

© Gen(): Return sk = f & Fm.n

@ Encs(m): Pick a random r < {0,1}™. Return (m @ f(r), r),
where m € {0,1}".

© Decs(c,r): Return ¢ @ f(7).

Features. Suppose the messages my, ..., m, are encrypted as the
cipher-texts (c1,), ..., (cu, fu)-

@ As long as the ry, ..., r, are all distinct, each one-time pad
f(r1),...,f(r,) are uniform and independent of others. So, this
encryption scheme is perfectly secure!

@ The probability that any two of the randomness in r1,..., r, are not
distinct is very small (We shall prove this later as “Birthday Bound")

@ This scheme is a “state-less” encryption scheme. Alice and Bob do not
need to remember any private state (except the secret-key sk)!

Random Functions

Bottleneck of using Random Functions

@ The secret-key sk needs n2™ bits to represent it, which is
exponentially large.

@ We shall replace “random functions” using “pseudorandom
functions” to construct an encryption scheme that has short
keys and remains secure against computationally bounded
adversaries!

Random Functions

Birthday Bound

Suppose we have a set S = {s1,%,...,5}
Suppose we sample an element x; uniformly at random from
the set S.

Replace this element back in the set S and sample an element
x2 uniformly at random from the set S

This process of sampling is referred to as “sampling with
replacement”

Suppose we sampled elements {x1,x2, ..., Xk}

We are interested in understanding how likely is it that there
are two elements x; = x;, such that i # j. Intuitively, we are
interested in finding the probability that k elements when
sampled uniformly at random from S (with replacement)
encounters a collision

Random Functions

Birthday Bound I

@ Why are we studying this probability? Recall that earlier in
this lecture we noted that if all the random r's chosen in the
encryption algorithm are distinct, then the encryption scheme
remains secure against computationally bounded
eavesdroppers. So, the probability that we are computing shall
help us determine the length of the randomness so that it is
highly unlikely to encounter collisions.

@ Okay, let us start by studying the complementary event. We
are interested in the event that all the samples {xi, x2, ..., x}
are distinct

@ Note that the probability that x; is distinct from all previous
samples is 1

e Conditioned on the fact that {x;} is distinct, the probability
that x, is distinct from all previous samples is (1 — %)

Random Functions

Birthday Bound [l

e Conditioned on the fact that {x;, x2} are distinct, the
probability that x3 is distinct from all previous samples is

2
1-3

@ Extrapolating these observations, we can conclude the
following. Conditioned on the fact that {xi,x2,...,x;_1} are
distinct, the probability that x; is distinct from all previous

samples is (1 — %)

@ So, using the chain rule, we can conclude the following. The
probability that {xi,...,xk} are all distinct is the following

product.
1.<1_1>.<1_2>...(1_k_1>
n n n

Random Functions

Birthday Bound

@ This expression is the product that we saw in the midterm. We
shall use the fact that exp(—x) ~ 1 — x when 0 < x < 1. This
fact can be made more mathematically precise using Taylor's
Remainder Theorem, which is beyond the scope of this course.
So, in this course, we shall proceed by using exp(—x) =~ 1 — x

@ So, let us begin the manipulation of the expression above

L) 2)

~ exp(—0) exp(~1/n) exp(~2/n)- - exp(—(k — 1)/n)

Random Functions

Birthday Bound

@ Suppose we set k = /|S|/100. Substituting this value of k in
the formula above, note that the probability that all the
samples are distinct is ~ exp(—1/20000), which is very close
to 1!

@ Suppose we set k = 100@. Substituting this value of k in
the formula above, note that the probability that all the
sample are distinct is ~ exp(—5000), which is very close to 0!

@ Intuitively, it says that if k < \/@/100, all samples are very
likely to be distinct. On the other hand, if k > 100+/S], it is
highly unlikely that all samples are distinct (that is, there
exists two identical samples; or collision occurs)

Random Functions

A Numerical Example of the Birthday Bound

@ Suppose we are picking uniform random strings from the set
{0,1}"

@ Our objective is that random samples have a collision
with probability at most 2780

21000

o What value of n should we use?

@ So, we have S = {0,1}". The size of the set S is 2".

@ The probability that k samples are all distinct is
exp(—k?2/2|S|) = exp(—k?/2™"1). The problem states that we
shall pick k = 21900 samples.

@ Our objective is to have collision probability < 278, That is,
the probability of all samples being distinct is > 1 — 280,

@ So, we have the following equation and we need to solve for n
exp(_k2/2n+1) — exp(_22000/2n+1) > 1_2*80 ~ exp(_2780)

@ Solving this equation is left as an exercise

Random Functions

