Lecture 14: One-way Functions
In this lecture we shall introduce the notion of one-way functions,

We shall consider the construction of one-way functions based on the assumption that factorization of the product of two large primes is difficult,

Furthermore, we shall also consider one-way function construction based on other assumptions like hardness of discrete logarithm, finding square root, and elliptic curve cryptography,

Finally, we shall also learn about hardness amplification of “weak” one-way functions into one-way functions.
A function $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$ is a one-way function if

1. The function f is easy to evaluate, and
2. The function f is difficult to invert

- We believe certain functions are one-way functions.
- If $P = NP$ then one-way functions cannot exist (see appendix). So, proving that a particular function f is a one-way function will demonstrate that $P \neq NP$, which we believe is a very difficult problem to resolve.
- So, based on our current knowledge in mathematics, we have invested faith in believing that a few specially designed functions are one-way functions.
Suppose \(f : D \rightarrow R \) be a function, where \(D \) is the domain and \(R \) is the range of the function \(f \).

We consider the game between honest challenger and an adversary:

- The honest challenger samples \(x \leftarrow D \) and computes \(z = f(x) \).
- The honest challenger presents the challenge \(z \in R \) to the adversary.
- The adversary on input \(z \in R \), outputs \(x' \in D \).
- The adversary wins the game if \(f(x') = z \).

Note that we do not insist on finding \(x' = x \). The adversary wins if she finds any pre-image of \(z \), that is, any \(x' \in D \) such that \(f(x') = z \). The pre-image chosen by the adversary need not be exactly the same as the pre-image chosen by the honest challenger.
Note that if an adversary has unbounded computational power, she can evaluate f for every entry in D and check which one of them gives z. So, it is necessary to restrict the adversary to being \textit{computationally bounded} or an \textit{efficient algorithm}.

The probability that an adversary A wins in the game against the honest challenger H is succinctly expressed below:

$$\mathbb{P} \left[f(x') = z : x \leftarrow^S D, z = f(x), x' = A(z) \right] \leq \text{small}$$

The function f is said to be one-way if for \textit{any} computationally bounded adversary A the probability above is “small”

In this lecture we shall see how we can use “hardness of factorization” to construct a one-way function.
Think: Why did we not insist on $x' = x$ for successful inversion of the function f?
Let \mathcal{P}_n represent the set of prime numbers in the set $[2^{n-1}, 2^n - 1]$. That is, \mathcal{P}_n consists of prime numbers that need exactly n bits in their binary representation.

Let us consider the function $f: \mathcal{P}_n \times \mathcal{P}_n \rightarrow \{0, 1\}^{2n}$ defined by $f(x, y) = x \cdot y$, where \cdot represents the integer multiplication of the prime numbers $x, y \in \mathcal{P}_n$.

The *hardness of factorization* assumption says that f is a one-way function.

Remarks.

Given z, an adversary can win by either presenting (p, q) or (q, p) such that $p \cdot q = z$.

Note that we are not saying whether it is easy or difficult to factorize other composite numbers. We are only saying that “factorizing numbers that are product of two large prime numbers” is difficult.
In this course, we shall represent this by saying that, for all computationally bounded adversary A, we have

$$\mathbb{P} \left(\begin{array}{c}
\text{In a more advanced course, we shall say that the probability of successfully inverting is negligible in } n, \text{ and define “negligible functions” formally. For this course, we shall use } \approx 0 \text{ notation.}
\end{array} \right) \approx 0$$
Suppose we define $g : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^{2n}$ by $g(x,y) = x \cdot y$.

Think: Why isn’t g a one-way function?

However, we shall prove that g is a weak form of one-way function. Suppose $(x, y) \in \mathcal{P}_n \times \mathcal{P}_n$, then we know that g is hard to invert. The probability that $(x, y) \in \mathcal{P}_n \times \mathcal{P}_n$ is presented below

$$\mathbb{P}[(x, y) \in \mathcal{P}_n \times \mathcal{P}_n] = \frac{|\mathcal{P}_n|}{2^n} \times \frac{|\mathcal{P}_n|}{2^n}$$

$$\approx \left(\frac{2^{n-1}/n}{2^n}\right)^2$$

$$= \frac{1}{4n^2}$$
Another One-way Function

- So, basically we conclude the following
 - In $1 - \frac{1}{4n^2}$ fraction of the inputs, we do not have any assurance about how hard it is to invert the function g
 - In $\frac{1}{4n^2}$ fraction of the inputs, the function g is hard to invert (based on hardness of factorization).

- We want to claim the following

Claim

$$\Pr[A \text{ factorizes } z] \lesssim 1 - \frac{1}{4n^2}$$

- We proceed as follows

$$\Pr[A \text{ factorizes } z] = \Pr[A \text{ factorizes } z, (x, y) \notin \mathcal{P}_n \times \mathcal{P}_n]$$
$$+ \Pr[A \text{ factorizes } z, (x, y) \in \mathcal{P}_n \times \mathcal{P}_n]$$
We bound each of these two terms separately

\[\mathbb{P} [A \text{ factorizes } z, (x, y) \notin \mathcal{P}_n \times \mathcal{P}_n]\]
\[= \mathbb{P} [A \text{ factorizes } z | (x, y) \notin \mathcal{P}_n \times \mathcal{P}_n] \mathbb{P} [(x, y) \notin \mathcal{P}_n \times \mathcal{P}_n]\]
\[\leq 1 \cdot \left(1 - \frac{1}{4n^2} \right) = 1 - \frac{1}{4n^2}\]

The other term is

\[\mathbb{P} [A \text{ factorizes } z, (x, y) \in \mathcal{P}_n \times \mathcal{P}_n]\]
\[= \mathbb{P} [A \text{ factorizes } z | (x, y) \in \mathcal{P}_n \times \mathcal{P}_n] \mathbb{P} [(x, y) \in \mathcal{P}_n \times \mathcal{P}_n]\]
\[\leq 0 \cdot \frac{1}{4n^2} = 0\]

So, overall, we get

\[\mathbb{P} [A \text{ factorizes } z] \leq \left(1 - \frac{1}{4n^2} \right) + 0 = 1 - \frac{1}{4n^2}\]
Intuitive Conclusion: If there exists a “dense” set of inputs for which the function g is hard to invert, then the function g is “slightly” hard to invert on average!

The next question is: Can we “amplify this nugget of hardness” in the function g to get a one-way function?
Suppose $g^{(k)} : (\{0, 1\}^n \times \{0, 1\}^n)^k \rightarrow (\{0, 1\}^{2n})^k$ defined as follows

$$g^{(k)}(x_1, y_1, x_2, y_2, \ldots, x_k, y_k) = (x_1 \cdot y_1, x_2 \cdot y_2, \ldots, x_k \cdot y_k)$$

Note that an adversary who inverts $g^{(k)}$ factorizes every $z_i = x_i \cdot y_i$, where $1 \leq i \leq n$

From the previous claim, we have, for all $1 \leq i \leq k$

$$\mathbb{P} [A \text{ factorizes } z_i] \lesssim 1 - \frac{1}{4n^2}$$

So, the probability that A inverts all z_i, where $1 \leq i \leq k$, is

$$\mathbb{P} [A \text{ factorizes } z_1, \ldots, z_k] \lesssim \left(1 - \frac{1}{4n^2}\right)^k \leq \exp(-k/4n^2)$$

Note that is we use $k = 4n^2 t$, then the probability that any efficient adversary A inverts $g^{(k)}$ is $\lesssim \exp(-t)$
Let (G, \times) be a group and g be a generator. That is, $G = \{g^0, g^1, g^2, \ldots, g^{K-1}\}$, where $K = |G|$

Let $f : \{0, \ldots, K-1\} \rightarrow G$ be defined as follows

$$f(x) = g^x$$

Think: Why is this function efficient to evaluate?

It is believed that there exists group G where f is hard to invert

Clarification: We are not saying that f is hard to invert in any group G. There are special groups G where f is believed to be hard to invert

Note that the inversion problem asks you to find the “logarithm,” given y find x such that $g^x = y$. This is known as the discrete logarithm problem
Let p and q be n-bit prime numbers
Let $N = pq$
Rabin’s function is defined as follows

$$f(x) = x^2 \mod N$$

Think: Why is this function efficient to evaluate?
It is believed that finding square-roots mod N is hard when N is the product of two large primes
Think: How can you invert Rabin’s function if you know the factorization of N. That is, given p and q, how can you efficiently compute x' such that $(x')^2 \mod N = y$, where $y = x^2 \mod N$.
(Hint: First, give efficient algorithm for square-root over prime-order fields. Then use Chinese remainder theorem.)
Elliptic curves are sets of pairs of elements x, y in a field that satisfy the equation $y = x^3 + ax + b$, for some suitably chosen values of a, b.

There is a definition of "point addition" over an elliptic curve, i.e., given two points P and Q on the curve, we can suitably define a point $P + Q$ on the curve.

Given a point P on the elliptic curve, we can add x-times $P + P + \cdots + P$ and represent the resulting point as xP.

Then the following function is believed to be one-way for suitable elliptic curves:

$$f(x, P) = (P, xP)$$

Think: Can you connect this assumption to the discrete log problem?
A function $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$ is a one-way permutation if it is a one-way function and the function f is a bijection.

We introduce this primitive because the construction of pseudorandom generators from one-way permutations is significantly more intuitive than the construction of pseudorandom generators from OWF.
Appendix: Efficient Inversion of Efficiently Computable Functions I

We shall show the following result

Theorem

Let $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$ be a function that can be efficiently computed. If $P = NP$ then there exists an efficient algorithm to find an inverse x' of y, where $y = f(x)$ for some $x \in \{0, 1\}^n$.
Before we begin the proof of the theorem, let me emphasize that there is always an inefficient algorithm to find x', an inverse of y:

Invert-Inefficient (y):

1. For $x' \in \{0, 1\}^n$: If $f(x') == y$, then return x'
2. Return -1

This is an inefficient algorithm to compute an inverse of $y = f(x)$.
Appendix: Efficient Inversion of Efficiently Computable Functions III

Let us prove the theorem now. First, let us introduce a few notations.

- Recall $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$ is the function
- Let $\varphi(x)$ be a 3-SAT formula that tests whether $f(x) = y$ or not. That is, $\varphi(x)$ evaluates to true if and only if $f(x) = y$.
- If f can be evaluated in polynomial time, then the size of $\varphi(x)$ is polynomial in n
- If $P = NP$ then we can efficiently determine: Is $\varphi(x)$ satisfiable or not
Let us introduce the notion of a partial assignment of variables $\{x_1, x_2, \ldots, x_n\}$

- Consider the following example.

$$\varphi(x) = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3)$$

- The formula “$\varphi(x)$ under the restriction $x_i \mapsto b$,” is obtained by substituting b as the value of x_i in the formula $\varphi(x)$ and simplifying. For example, “$\varphi(x)$ under the restriction $x_1 \mapsto 0$” is the following formula

$$\varphi(x)|_{x_1 \mapsto 0} = (0 \lor x_2 \lor \neg x_3) \land (\neg 0 \lor x_2 \lor x_3)$$

$$= (0 \lor x_2 \lor \neg x_3) \land (1 \lor x_2 \lor x_3)$$

$$= (x_2 \lor \neg x_3)$$
Given a set of partial assignments
assign = \{x_{i_1} \mapsto b_1, x_{i_2} \mapsto b_2, \ldots, x_{i_k} \mapsto b_k\}, we define
\varphi(x)|_{assign} by setting the values of x_{i_1}, \ldots, x_{i_k} as b_1, \ldots, b_k in
\varphi(x) and simplifying

Again, if P = NP and f is efficiently computable, then it is
efficient to find whether \varphi(x)|_{assign} is satisfiable or not
Appendix: Efficient Inversion of Efficiently Computable Functions VI

Now consider the following algorithm. We will construct a solution \(x_1 x_2 \ldots x_n \) such that \(f(x_1 x_2 \ldots x_n) = y \) one bit at a time.

\[
\text{Find_Inverse}(y):
\]
\begin{enumerate}
\item Let \(\varphi(x) \) be the 3-SAT formula mentioned above
\item If \(\varphi(x) \) is not satisfiable, then return -1
\item assign = \(\emptyset \)
\item For \(i = 1 \) to \(n \):
 \begin{enumerate}
 \item result = Test whether \(\varphi(x)|_{\text{assign} \cup \{x_i \mapsto 0\}} \) is satisfiable or not
 \item If result == true: assign = assign \(\cup \{x_i \mapsto 0\} \)
 \item Else: assign = assign \(\cup \{x_i \mapsto 1\} \)
 \end{enumerate}
\item Return assign
\end{enumerate}

Note that this is an efficient algorithm to compute an inverse of \(y \) if \(f \) can be computed efficiently and \(P = NP \)
Appendix: Defining Addition on Elliptic Curves

Consider the field \((\mathbb{R}, +, \times)\)

Let us consider the plot of the curve \(y^2 = x^3 + ax + b\) (in this example, we have \(a = -2\) and \(b = 4\))

Given two points \(P\) and \(Q\) on the curve, draw the line through them and find \(R'\), the third intersection point of the line with the curve

Reflect \(R'\) on the \(X\)-axis to obtain the point \(R\)

We define the point \(R\) as the sum \(P + Q\)