Lecture 09: Shamir Secret Sharing (Lagrange Interpolation)

Recall: Goal

We want to

Share a secret $s \in \mathbb{Z}_p$ to n parties, such that $\{1,\dots,n\} \subseteq \mathbb{Z}_p$,

Any two parties can reconstruct the secret s, and

No party alone can predict the secret s

Recall: Secret Sharing Algorithm

```
SecretShare(s,n)

Pick a random line \ell(X) that passes through the point (0,s)

This is done by picking a_1 uniformly at random from the set \mathbb{Z}_p

And defining the polynomial \ell(X) = a_1X + s

Evaluate s_1 = \ell(X = 1), \ s_2 = \ell(X = 2), \dots, \ s_n = \ell(X = n)

Secret shares for party 1, party 2, ..., party n are s_1, s_2, \ldots, s_n, respectively
```

Recall: Reconstruction Algorithm

SecretReconstruct $(i_1, s^{(1)}, i_2, s^{(2)})$

Reconstruct the line $\ell'(X)$ that passes through the points $(i_1, s^{(1)})$ and $(i_2, s^{(2)})$

We will learn a new technique to perform this step, referred to as the Lagrange Interpolation

Define the reconstructed secret $s' = \ell'(0)$

General Goal

We want to

Share a secret $s \in \mathbb{Z}_p$ to n parties, such that $\{1,\ldots,n\} \subseteq \mathbb{Z}_p$,

Any t parties can reconstruct the secret s, and

Less than t parties cannot predict the secret s

Shamir's Secret Sharing Algorithm

```
SecretShare(s, n)
```

Pick a polynomial p(X) of degree $\leq (t-1)$ that passes through the point (0,s)

This is done by picking a_1, \ldots, a_{t-1} independently and uniformly at random from the set \mathbb{Z}_p

And defining the polynomial

$$\ell(X) = a_{t-1}X^{t-1} + a_{t-2}X^{t-2} + \dots + a_1X + s$$

Evaluate
$$s_1 = p(X = 1)$$
, $s_2 = p(X = 2)$, ..., $s_n = p(X = n)$

Secret shares for party 1, party 2, ..., party n are s_1, s_2, \ldots, s_n , respectively

Shamir's Reconstruction Algorithm

```
SecretReconstruct(i_1, s^{(1)}, i_2, s^{(2)}, \dots, i_t, s^{(t)})
```

Use Lagrange Interpolation to construct a polynomial p'(X) that passes through $(i_1, s^{(1)}), \ldots, (i_t, t^{(t)})$ (we describe this algorithm in the following slides)

Define the reconstructed secret s' = p'(0)

Lagrange Interpolation: Introduction I

Consider the example we were considering in the previous lecture

The secret was s = 3

Secret shares of party 1, 2, 3, and 4, were 0, 2, 4, and 1, respectively

Suppose party 2 and party 3 are trying to reconstruct the secret

Party 2 has secret share 2, and Party 3 has secret share 4

We are interested in finding the line that passes through the points (2,2) and (3,4)

Lagrange Interpolation: Introduction II

Subproblem 1:

Let us find the line that passes through (2,2) and (3,0)

Note that at X = 3 this line evaluates to 0, so

X = 3 is a root of the line

So, the line has the equation $\ell_1(X) = c \cdot (X-3)$,

where c is a suitable constant

Now, we find the value of c such that $\ell_1(X)$ passes through the point (2,2)

So, we should have $c \cdot (2-3) = 2$, i.e., c = 3

 $\ell_1(X) = 3 \cdot (X - 3)$ is the equation of that line

Lagrange Interpolation: Introduction III

Subproblem 2:

Let us find the line that passes through (2,0) and (3,4)

Note that at X = 2 this line evaluates to 0, so

X = 2 is a root of the line

So, the line has the equality $\ell_2(X) = c \cdot (X-2)$,

where c is a suitable constant

Now, we find the value of c such that $\ell_2(X)$ passes through the point (3,4)

So, we should have $c \cdot (3-2) = 4$, i.e. c = 4

$$\ell_2(X) = 4 \cdot (X - 2)$$

Lagrange Interpolation: Introduction IV

Putting Things Together:

Define
$$\ell'(X) = \ell_1(X) + \ell_2(X)$$

That is, we have

$$\ell'(X) = 3 \cdot (X - 3) + 4 \cdot (X - 2)$$

Evaluation of $\ell'(X)$ at X = 0 is

$$s' = \ell'(X = 0) = 3 \cdot (-3) + 4 \cdot (-2) = 3 \cdot 2 + 4 \cdot 3 = 1 + 2 = 3$$

Uniqueness of Polynomial I

We shall prove the following result

$\mathsf{Theorem}$

There is a unique polynomial of degree at most d that passes through (x_1, y_1) , (x_2, y_2) , ..., (x_{d+1}, y_{d+1})

If possible, let there exist two distinct polynomials of degree $\leq d$ such that they pass through the points (x_1, y_1) , (x_2, y_2) , ..., (x_{d+1}, y_{d+1})

Let the first polynomial be

$$p(X) = a_d X^d + a_{d-1} X^{d-1} + \dots + a_1 X + a_0$$

Let the second polynomial be

$$p'(X) = a'_d X^d + a'_{d-1} X^{d-1} + \dots + a'_1 X + a'_0$$

Uniqueness of Polynomial II

Let $p^*(X)$ be the polynomial that is the difference of the polynomials p(X) and p'(X), i.e.,

$$p^*(X) = p(X) - p'(X) = (a_d - a'_d)X^d + \dots (a_1 - a'_1)X + (a_0 - a'_0)$$

Observation. The degree of $p^*(X)$ is $\leq d$

Uniqueness of Polynomial III

For $i \in \{1, ..., d+1\}$, note that at $X = x_i$ both p(X) and p'(X) evaluate to y_i So, the polynomial $p^*(X)$ at $X = x_i$ evaluates to $y_i - y_i = 0$, i.e. x_i is a root of the polynomial $p^*(X)$

Observation. The polynomial $p^*(X)$ has roots $X = x_1$, $X = x_2, \ldots, X = x_{d+1}$

Uniqueness of Polynomial IV

We will use the following result

Theorem (Schwartz–Zippel, Intuitive)

A non-zero polynomial of degree d has at most d roots (over any field)

Conclusion.

Based on the two observations above, we have a $\leq d$ degree polynomial $p^*(X)$ that has at least (d+1) distinct roots x_1, \ldots, x_{d+1}

This implies, by Schwartz–Zippel Lemma, that the polynomial is the zero-polynomial.

That is, $p^*(X) = 0$.

This implies that p(X) and p'(X) are identical

This contradicts the initial assumption that there are two distinct polynomials p(X) and p'(X)

Summary

The proof in the previous slides proves that

Given a set of points (x_1, y_1) , ..., (x_{d+1}, y_{d+1})

There is a <u>unique</u> polynomial of degree at most d that passes through all of them!

Lagrange Interpolation I

Suppose we are interested in constructing a polynomial of degree $\leq d$ that passes through the points $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$

Lagrange Interpolation II

Subproblem *i*:

We want to construct a polynomial $p_i(X)$ of degree $\leq d$ that passes through (x_i, y_i) and $(x_j, 0)$, where $j \neq i$ So, $\{x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{d+1}\}$ are roots of the polynomial $p_i(X)$

Therefore, the polynomial $p_i(X)$ looks as follows

$$p_i(X) = c \cdot (X - x_1) \cdots (X - x_{i-1})(X - x_{i+1}) \cdots (X - x_{d+1})$$

Tersely, we will write this as

$$p_i(X) = c \cdot \prod_{\substack{j \in \{1, \dots, d+1\} \\ \text{such that } j \neq i}} (X - x_j)$$

Lagrange Interpolation III

Now, to evaluate c we will use the property that $p_i(x_i) = y_i$

Observe that the following value of c suffices

$$c = \frac{y_i}{\prod_{\substack{j \in \{1, \dots, d+1\} \\ \text{such that } j \neq i}} (x_i - x_j)}$$

So, the polynomial $p_i(X)$ that passes through (x_i, y_i) and $(x_j, 0)$, where $j \neq i$ is

$$p_i(X) = \frac{y_i}{\prod_{\substack{j \in \{1, \dots, d+1\} \text{ such that } j \neq i}} (X_i - X_j)} \cdot \prod_{\substack{j \in \{1, \dots, d+1\} \text{ such that } j \neq i}} (X - X_j)$$

Observe that $p_i(X)$ has degree d

Lagrange Interpolation IV

Putting Things Together:

Consider the polynomial

$$p(X) = p_1(X) + p_2(X) + \ldots + p_{d+1}(X)$$

This is the desired polynomial that passes through (x_i, y_i)

Claim

The polynomial p(X) passes through (x_i, y_i) , for $i \in \{1, \dots, d+1\}$

Lagrange Interpolation V

Proof.

Note that, for $j \in \{1, \dots, d+1\}$, we have

$$p_j(x_i) = \begin{cases} y_i, & \text{if } j = i \\ 0, & \text{otherwise} \end{cases}$$

Therefore,
$$p(x_i) = \sum_{j=1}^{d+1} p_j(x_i) = y_i$$

Summary of Interpolation

Given points $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$

Lagrange Interpolation provides <u>one</u> polynomial of degree $\leq d$ polynomial that passes through all of them

Theorem 1 states that this $\leqslant d$ degree polynomial is unique

Example for Lagrange Interpolation I

Let us find a degree \leq 2 polynomial that passes through the points (x_1, y_1) , (x_2, y_2) , and (x_3, y_3)

Subproblem 1:

We want to find a degree ≤ 2 polynomial that passes through the points (x_1, y_1) , $(x_2, 0)$, and $(x_3, 0)$ The polynomial is

$$p_1(X) = \frac{y_1}{(x_1 - x_2)(x_1 - x_3)}(X - x_2)(X - x_3)$$

Example for Lagrange Interpolation II

Subproblem 2:

We want to find a degree ≤ 2 polynomial that passes through the points $(x_1,0)$, (x_2,y_2) , and $(x_3,0)$. The polynomial is

$$p_2(X) = \frac{y_2}{(x_2 - x_1)(x_2 - x_3)}(X - x_1)(X - x_3)$$

Subproblem 3:

We want to find a degree ≤ 2 polynomial that passes through the points $(x_1,0)$, $(x_2,0)$, and (x_3,y_3) . The polynomial is

$$p_2(X) = \frac{y_3}{(x_3 - x_1)(x_3 - x_2)}(X - x_1)(X - x_2)$$

Example for Lagrange Interpolation III

Putting Things Together: The reconstructed polynomial is

$$p(X) = p_1(X) + p_2(X) + p_3(X)$$

Conclusion

This completes the description of Shamir's Secret Sharing algorithm. In the following lectures we will argue its security.