Lecture 07: Graph Representation

Objective

- We shall develop a new graph representation to argue security and correctness of cryptographic schemes
- As a representative application of this notation, we shall analyze private-key Encryption schemes using graphs

Assumption about Private-key Encryption Schemes

For simplicity of proof and clarity of the intuition, we shall consider the class of all private-key encryption algorithms with the following restrictions

- 2 The encryption algorithm $Enc_{sk}(m)$ is deterministic

I want to emphasize that with a bit of effort these *restrictions* can be removed

Graph of Private-key Encryption

Suppose (Gen, Enc, Dec) is a private-key encryption scheme that satisfies the two restrictions we mentioned earlier. We construct the following bipartite graph

- ullet The left partite set is the set of all message ${\cal M}$
- ullet The right partite set is the set of all cipher-texts ${\cal C}$
- Given a message $m \in \mathcal{M}$ and a cipher-text $c \in \mathcal{C}$, we add an edge (m, c) labeled sk, if we have $c = \operatorname{Enc}_{\operatorname{sk}}(m)$

This is the graph corresponding to the encryption scheme (Gen, Enc, Dec)

Intuition. The edge labeled sk witnesses the fact that the message m is encrypted to the cipher-text c. Or, we write this as $m \xrightarrow{\operatorname{sk}} c$. We emphasize that there might be more than one secret key that witnesses the fact that the message m is encrypted to the cipher-text c. Let $\operatorname{wt}(m,c)$ represent the number of secret keys sk such that sk witnesses the fact that c is an encryption of m

Describing Private-key Encryption Schemes

- Till now we have represented private-key encryption scheme as a triplet of algorithms (Gen, Enc, Dec)
- Henceforth, we can equivalently express them as graphs

Property One: Characterization of Correctness

Theorem

A private-key encryption scheme (Gen, Enc, Dec) is <u>incorrect</u> if and only if there are two distinct messages $m, m' \in \mathcal{M}$, a secret key $sk \in \mathcal{K}$, and a cipher-text $c \in \mathcal{C}$ such that $m \xrightarrow{sk} c$ and $m' \xrightarrow{sk} c$.

- Note that if there are two message m, m' such that $m \xrightarrow{sk} c$ and $m' \xrightarrow{sk} c$ then Bob cannot distinguish whether Alice produced the cipher text c for the message m or m'. Hence, whatever decoding Bob performs, he is bound to be incorrect
- For the other direction, suppose Bob is unable to decode the (sk,c) correctly. If there is a unique $m \in \mathcal{M}$ such that $m \xrightarrow{\mathsf{sk}} c$ then Bob can obviously decode correctly. So, there must be two different messages $m, m' \in \mathcal{K}$ such that $m \xrightarrow{\mathsf{sk}} c$ and $m' \xrightarrow{\mathsf{sk}} c$

Property Two: Correct Schemes Cannot Compress I

Theorem

A correct private-key encryption scheme (Gen, Enc, Dec) has $|\mathcal{C}| \geqslant |\mathcal{M}|$.

- Suppose not. That is, assume that we have a correct private-key encryption scheme with $|\mathcal{C}| < |\mathcal{M}|$.
- Fix any secret key $sk \in \mathcal{K}$.
- Suppose $\mathcal{M} = \{m_1, m_2, \dots, m_{\alpha}\}$. Consider the following maps

$$m_1 \xrightarrow{\operatorname{sk}} c_1$$
 $m_2 \xrightarrow{\operatorname{sk}} c_2$
 \vdots
 $m_{\alpha} \xrightarrow{\operatorname{sk}} c_{\alpha}$

Property Two: Correct Schemes Cannot Compress II

Note that these mappings exist because given any sk and m the encryption algorithm maps to a unique cipher-text.

- Since $|\mathcal{C}| < |\mathcal{M}|$, by pigeon-hole principle there are two distinct messages $m, m' \in \mathcal{M}$ and a cipher text $c \in \mathcal{C}$ such that $m \xrightarrow{\mathsf{sk}} c$ and $m' \xrightarrow{\mathsf{sk}} c$
- So the scheme is incorrect. Hence contradiction.

Property Three: Characterization of Security I

Theorem

A private-key encryption scheme (Gen, Enc, Dec) is secure if and only if for any c and two distinct message $m, m' \in \mathcal{M}$ we have $\mathsf{wt}(m,c) = \mathsf{wt}(m',c)$.

- For any $m \in \mathcal{M}$ and $c \in \mathcal{C}$, note that we have $\mathbb{P}\left[\mathbb{C} = c | \mathbb{M} = m\right] = \mathsf{wt}(m,c)/|\mathcal{K}|$.
- Exercise: Prove that the security definition we have studied is equivalent to saying the following
 - "For any two distinct messages $m, m' \in \mathcal{M}$ and a cipher-text $c \in \mathcal{C}$ we have: $\mathbb{P}\left[\mathbb{C} = c | \mathbb{M} = m\right] = \mathbb{P}\left[\mathbb{C} = c | \mathbb{M} = m'\right]$ "
- Given this result, we can conclude that a scheme (Gen, Enc, Dec) is secure if and only if
 - "For any two distinct messages $m, m' \in \mathcal{M}$ and a cipher-text $c \in \mathcal{C}$ we have: $\mathsf{wt}(m,c) = \mathsf{wt}(m',c)$ "

Property Three: Characterization of Security II

- Food for thought. In a secure scheme, if there are $m \xrightarrow{sk} c$, then for all $m' \in \mathcal{M}$ there exists some sk' such that $m' \xrightarrow{sk'} c$
- Food for thought. The size of the set \mathcal{K} need not be divisible by the size of the set \mathcal{M} . However, if there is a message m and a cipher-text c such that $\operatorname{wt}(m,c)=w$, then the number of secret keys $|\mathcal{K}|\geqslant w|\mathcal{M}|$. Why?

Theorem

A correct and secure private-key encryption scheme (Gen, Enc, Dec) has $|\mathcal{K}| \geqslant |\mathcal{M}|$

- Suppose not. That is, there is a correct and secure scheme with $|\mathcal{K}| < |\mathcal{M}|$.
- Fix a cipher-text $c \in \mathcal{C}$ such that there exists $m \in \mathcal{M}$ and $\mathsf{sk} \in \mathcal{K}$ such that $m \xrightarrow{\mathsf{sk}} c$. Intuitively, we are picking a cipher-text that has a positive probability. For example, we are not picking a cipher-text that is never actually produced.
- ullet Let the message space be $\mathcal{M}=\{m_1,m_2,\ldots,m_lpha\}$
- Note that, for any $m_i \in \mathcal{M}$ there exists some sk_i such that $m_i \xrightarrow{\mathrm{sk}_i} c$ (This is a property of secure private-key encryption schemes that was left as an exercise in the previous slide)

Now, consider the mappings

$$m_1 \xrightarrow{\operatorname{sk}_1} c$$

$$m_2 \xrightarrow{\operatorname{sk}_2} c$$

$$\vdots$$

$$m_{\alpha} \xrightarrow{\operatorname{sk}_{\alpha}} c$$

- Since $|\mathcal{K}| < |\mathcal{M}|$, by pigeon-hole principle, there exists two distinct messages m_i , m_j such that $\mathsf{sk}_i = \mathsf{sk}_j$ in the above mappings.
- This violates correctness. Hence contradiction.

Optimality of One-time Pad

- Note that any correct private-key encryption scheme must have $|\mathcal{C}| \geqslant |\mathcal{M}|$ (property two)
- Note that any correct and secure private-key encryption scheme must have $|\mathcal{K}| \ge |\mathcal{M}|$ (property four)
- One-time pad is a correct and secure scheme that achieves $|\mathcal{K}| = |\mathcal{C}| = |\mathcal{M}|$

Additional Food for Thought

- Recall that Property four states that the "correctness and security" of a private-key encryption scheme implies that the size of the set of keys is greater-than-or-equal to the size of the set of messages. For any \mathcal{M} , construct a correct but insecure private-key encryption scheme such that $|\mathcal{K}|=1$! This result shall show the necessity of both correctness and security in that property.
- Another natural question is: Can we provide such guarantees for private-key encryption schemes that are secure but incorrect? The answer is NO. Think of a private-key encryption scheme that is secure (but incorrect) and works for any message set \mathcal{M} and has $|\mathcal{K}| = |\mathcal{C}| = 1$!