
Lecture 05: Repeated Squaring

Repeated Squaring



Recall

Let (G , ◦) be a group with generator g
We define g0 = e, where r ∈ G is the identity element of G

We define g i =

i-times︷ ︸︸ ︷
g ◦ g ◦· · · ◦ g

For example, the group (Z∗
7,×) is generated by 3 but not 2

Repeated Squaring



Motivation of Efficient Algorithm to Compute
Exponentiation

Suppose p is a prime number that is represented using
1000-bits
Note that the number p is in the range [2999, 21000). We shall
summarize this by stating that p is roughly (in the order of)
21000.
Suppose we are interested to work on the field (Z∗

p,×) with
generator g
Given input i ∈ {0, 1, . . . , p − 1}, we are interested in
computing g i ∈ Z∗

p

Repeated Squaring



First Attempt

Exp (i):
1 prod = e
2 For index in the range {1, ..., i}:

1 prod = prod ◦ g
3 Return prod

Note that this algorithm runs the inner loop i times. The
number i can take values {0, 1, . . . , p − 2}. For example, if
i > 2500 then the algorithm will run the inner loop more than
the number of atoms in the universe. Effectively, the algorithm
is useless
The algorithm takes O(i) run-time. The size of the input i is
log i . So, this algorithm is an exponential time algorithm

Repeated Squaring



Second Attempt I

Exp (i):
1 If i = 0: Return e
2 If i is even:

1 α = Exp(i/2)
2 Return α ◦ α

3 If i is odd:
1 α = Exp((i − 1)/2)
2 Return α ◦ α ◦ g

Note that the argument to Exp becomes smaller by one-bit in
recursive call. So, the algorithm performs (at most) 1000
recursive call. This is an efficient algorithm because it runs in
time O(log i)

Repeated Squaring



Second Attempt II

A Few Optimizations.

Testing whether i is even or not can be performed by
computing i&1 (here, & is the bit-wise and of the binary
representation of i and 1

Computing (i/2) when i is even, or computing (i − 1)/2 when
i is odd can be achieved by i � 1 (that is, right-shift the
binary representation of i by one position)

Repeated Squaring



Second Attempt III

The code shall look as follows

Exp (i):
1 If i = 0: Return e

2 j � 1
3 If (i&1) == 0:

1 α = Exp(j)
2 Return α ◦ α

4 else:
1 α = Exp(j)
2 Return α ◦ α ◦ g

Repeated Squaring



Second Attempt IV

1 The algorithm makes recursive calls. Can we further optimize
and avoid recursive function calls? That is, can we unroll the
recursion into a for loop?

Repeated Squaring



Final Attempt I

In the following code, we assume that we represent the prime p
using t-bits. For example, we were considering t = 1000 in the
ongoing example.
We perform a preprocessing step to compute the following global
variables.

Global Preprocessing.
1 For index in the set {0, 1, . . . , t − 1}:

1 If index == 0: αindex = g and cindex = 1
2 Else: αindex = αindex−1 ◦ αindex−1 and cindex = (cindex−1 � 1)

Note that αindex = g2index
, for all index ∈ {0, 1, . . . , t − 1}

Further, note that cindex = 2index, for all
index ∈ {0, 1, . . . , t − 1}

Repeated Squaring



Final Attempt II

We shall use the preprocessed data to compute the exponentiation

Exp (i):
1 prod = e
2 For index in the set {0, 1, . . . , t − 1}:

1 If (i < cindex) : Break
2 If (i&cindex) 6= 0: prod = prod ◦ αindex

3 Return prod

Note that the test “the (1+ index)-th bit in the binary
representation of i is 1” is identical to the test (i&cindex) 6= 0

If this test passes, then prod is multiplied by αindex = g2index

Prove: This approach correctly calculates g i

Note that the runtime is O(log i) (that is, the algorithm is
efficient)

Repeated Squaring



Example Problem I

Let us consider a problem that shall use all the facts we
studied about groups and fields in the last two lectures. There
are multiple solutions with varying degree of complexities

Compute
172020 mod 23

Repeated Squaring



Example Problem II

Solution 1.
We can use repeated squaring directly to compute

171 mod 23

172 mod 23

174 mod 23
...

171024 mod 23

Write 2020 in binary and compute 172020 mod 23 using the
values computed above

Although this is a correct and a tractable way to compute this
value, it is computationally intensive and prone to errors
(without a calculator)

Repeated Squaring



Example Problem III

Solution 2.

In homework you will prove that xp = x mod p, where p is a
prime and x is any integer

You can use this fact to simplify the computation of 172020

mod 23 as follows

Repeated Squaring



Example Problem IV

172020 mod 23 = 1723 · 171997 mod 23

=
(
1723

)2
· 171974 mod 23

...

=
(
1723

)87
· 1719 mod 23

= (17)87 · 1719 mod 23, using xp = x mod p

= 17106 mod 23

=
(
1723

)4
· 1714 mod 23

= (17)4 · 1714 mod 23, using xp = x mod p

= 1718 mod 23

This final expression can be computed using the repeated
squaring technique

Repeated Squaring



Example Problem V

Solution 3.
In homework you will prove that xp−1 = 1 mod p, where p is
a prime and x is any integer NOT divisible by p (there are also
alternate proofs of this statement by considering the size of
the subgroup of (Z∗

p,×) that is generated by x)

So, we can compute the expression as follows

172020 mod 23 = 1722 · 171998 mod 23

=
(
1722

)2
· 171976 mod 23

...

=
(
1722

)91
· 1718 mod 23

= (1)91 · 1718 mod 23, using xp−1 = 1 mod p

= 1718 mod 23

Repeated Squaring



Example Problem VI

BTW, in general you can conclude that

xn = xn mod p−1 mod p,

for any integer n and any integer x that is not divisible by p

Now you can compute 1718 mod 23 result using repeated
squaring technique

171 = 17 mod 23

172 = 13 mod 23

174 = 8 mod 23

178 = 18 mod 23

1716 = 2 mod 23

Repeated Squaring



Example Problem VII

Now, we have

1718 = 1716+2 mod 23

= 1716 · 172 mod 23
= 2 · 13 mod 23
= 3 mod 23

Therefore, we conclude that

172020 = 1718 = 3 mod 23.

That is our answer!

Repeated Squaring


