Lecture 04: Groups and Fields

Groups and Fields

(日) (日) (

ъ

Definition

A group, represented by (G, \circ) , is defined by a set G and a binary operator \circ that satisfy the following properties

- **1** Closure. For all $a, b \in G$, we have $a \circ b \in G$
- Solution Associativity. For all a, b, c ∈ G, we have (a ∘ b) ∘ c = a ∘ (b ∘ c)
- **3** Identity. There exists an element $e \in G$ such that for all $a \in G$, we have $a \circ e = a$
- Inverse. For every element a ∈ G, there exists an element (-a) ∈ G such that a ∘ (-a) = e

(4回) (4回) (4回)

- Verify that ({0,1}ⁿ, ⊕), where ⊕ is the bit-wise XOR of bits, is a group
 - Closure and Associativity is trivial to verify *n*-times
 - Show that $00 \cdots 0$ is the identity
 - Show that for $a \in \{0,1\}^n$, the inverse of a is a itself

・ 同 ト ・ ヨ ト ・ ヨ ト

One-time Pad extended to Arbitrary Groups

Figure: One-time Pad encryption scheme for the group (G, \circ) .

Verify that the scheme is always correct

Groups and Fields

イロト イポト イヨト イヨト 二日

- Groups can be infinite size. (ℤ, +), where ℤ is the set of all integers and + is integer addition, is a group (Verify that it satisfies all properties of a group)
- Groups can be finite size. (Z_n, +), where Z_n = {0,..., n − 1} and + is integer addition mod n, is a group (Verify that it satisfies all properties of a group)

イロト イポト イヨト イヨト

Following are NOT groups. Find which rule is violated.

- (\mathbb{Z}, \times), where \times is the integer multiplication
- ($\mathbb{Z}^*,\times),$ where \mathbb{Z}^* is the set of all non-zero integers and \times is the integer multiplication
- (\mathbb{Q},\times), where \mathbb{Q} is the set of all rationals and \times is rational multiplication

But (\mathbb{Q}^*, \times) , where \mathbb{Q}^* is the set of all non-zero rationals and \times is rational multiplication, is a group!

▲御▶ ★ 国▶ ★ 国▶

- Prove that (ℤ_p^{*}, ×) is a group when p is a prime, × is integer multiplication mod p, and ℤ_p^{*} = {1,..., p − 1}
- Prove that (\mathbb{Z}_n^*, \times) is <u>NOT</u> a group when *n* is <u>NOT</u> a prime, \times is integer multiplication mod *n*, and $\mathbb{Z}_n^* = \{1, \dots, n-1\}$

・ロト ・ 同ト ・ ヨト ・ ヨト

Groups need not be commutative.

 Define a group that is not commutative. Hint: Consider G as the set of n × n full-rank matrices with elements in Q. Now, define ◦ as matrix multiplication.

In the homework we shall define left and right inverses, and left and right identity. We shall prove interesting properties regarding these inverses and identities.

伺 ト イヨ ト イヨト

Generator I

- Consider the group $(\mathbb{Z}_5, +)$
- Note that
 - 2 added 0-times is 0
 - 2 added 1-times is 2
 - 2 added 2-times is 4
 - 2 added 3-times is 1
 - 2 added 4-times is 3
 - 2 added 5-times is 0
 - (and so on)
- We say that 2 generates $(\mathbb{Z}_5, +)$ because we can generate the entire set \mathbb{Z}_5 be repeatedly "+"-ing 2 to itself
- Consider the group (Z^{*}₇, ×). Which elements in Z₇ generate the group? And which elements do not generate the group?

▲御▶ ▲理▶ ▲理▶

- We will introduce a shorthand. By a^k , we represent the number $\overline{a \circ a \circ \cdots \circ a}$
- We define $a^0 = e$, the identity of the group

・ 同・ ・ ヨ・ ・

Repeated Squaring Technique

Let g be a generator of a group (G, \circ) . Consider the following algorithm.

- Let n[0] := g, the identity of (G, \circ)
- For i = 1 to k, do the following:

•
$$n[i] := n[i-1] \circ n[i-1]$$

- At the termination of the algorithm, we have the following n[0] = g, $n[1] = g^2$, $n[2] = g^4$, ..., $n[k] = g^{2^k}$
- Note that we only used the o operation only k times in this algorithm to generate this sequence
- Let *i* be an integer in the range $\{0, \ldots, 2^{k+1} 1\}$
- How to compute g^i using (k + 1) additional \circ operations?
- Note: This gives us an algorithm to compute gⁱ, where i ∈ {0,..., 2^{k+1} − 1} using at most (2k + 1) ∘ operations!

- (同) (回) (回) 三日

- Let (G, \circ) be a group generated by g
- Suppose we are interested in computing gⁱ
- First Algorithm: Multiply *g i*-times to get *gⁱ*. This method takes *O*(*i*) time.
- Second Algorithm: Use repeated squaring to compute g^i . This method takes $O(\log i)$ time.
- Why is the first algorithm an exponential-time algorithm? Why is the second algorithm a polynomial-time algorithm?

<ロ> <同> <同> <同> <同> < 同> < 同> <

Definition

A field is defined by a set of elements $\mathbb F,$ and two operators + and $\cdot.$ The field $(\mathbb F,+,\cdot)$ satisfies the following properties

- **O Closure.** For all $a, b \in \mathbb{F}$, we have $a + b \in \mathbb{F}$ and $a \cdot b \in \mathbb{F}$
- **2** Associativity. For all $a, b, c \in \mathbb{F}$, we have (a + b) + c = a + (b + c) and $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- **3** Commutativity. For all $a, b \in \mathbb{F}$, we have a + b = b + a and $a \cdot b = b \cdot a$
- Additive and Multiplicative identities. There exists elements 0 ∈ F and 1 ∈ F such that for all a ∈ F, we have a + 0 = a and a · 1 = a
- **5** Additive inverse. Every $a \in \mathbb{F}$ has $(-a) \in \mathbb{F}$ such that a + (-a) = 0
- Multiplicative inverse. Every 0 ≠ a ∈ G has (a⁻¹) ∈ F such that a ⋅ (a⁻¹) = 1
- **(2)** Distributivity. For all $a, b, c \in \mathbb{F}$, we have $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

イロト イポト イヨト イヨト 一日

- (ℤ_p, +, ×) is a field when p is a prime, + is integer addition mod p, and × is integer multiplication mod p
- $\bullet~(\mathbb{Q},+,\times)$ is a field
- The first example mentioned above is a *finite* field, and the second example mentioned above is an *infinite* field
- Size of any finite field is *pⁿ*, where *p* is a prime and *n* is a natural number
- Additional Reading: If interested, read about how the fields of size p², p³, ... are defined