
Lecture 04: Groups and Fields
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Group

Definition
A group, represented by (G , ◦), is defined by a set G and a binary
operator ◦ that satisfy the following properties

1 Closure. For all a, b ∈ G , we have a ◦ b ∈ G

2 Associativity. For all a, b, c ∈ G , we have
(a ◦ b) ◦ c = a ◦ (b ◦ c)

3 Identity. There exists an element e ∈ G such that for all
a ∈ G , we have a ◦ e = a

4 Inverse. For every element a ∈ G , there exists an element
(−a) ∈ G such that a ◦ (−a) = e

Groups and Fields



A Quick Check

Verify that ({0, 1}n,⊕), where ⊕ is the bit-wise XOR of bits,
is a group

Closure and Associativity is trivial to verify

Show that
n-times︷ ︸︸ ︷
00· · · 0 is the identity

Show that for a ∈ {0, 1}n, the inverse of a is a itself
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One-time Pad extended to Arbitrary Groups

Alice Bob

sk ∼ G

c = Encsk(m) := m ◦ sk

c

m′ = Decsk(c) := c ◦ (−sk)

Figure: One-time Pad encryption scheme for the group (G , ◦).

Verify that the scheme is always correct
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Examples I

Groups can be infinite size. (Z,+), where Z is the set of all
integers and + is integer addition, is a group (Verify that it
satisfies all properties of a group)

Groups can be finite size. (Zn,+), where Zn = {0, . . . , n − 1}
and + is integer addition mod n, is a group (Verify that it
satisfies all properties of a group)
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Examples II

Following are NOT groups. Find which rule is violated.

(Z,×), where × is the integer multiplication

(Z∗,×), where Z∗ is the set of all non-zero integers and × is
the integer multiplication

(Q,×), where Q is the set of all rationals and × is rational
multiplication

But (Q∗,×), where Q∗ is the set of all non-zero rationals and × is
rational multiplication, is a group!
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Examples III

Prove that (Z∗p,×) is a group when p is a prime, × is integer
multiplication mod p, and Z∗p = {1, . . . , p − 1}
Prove that (Z∗n,×) is NOT a group when n is NOT a prime, ×
is integer multiplication mod n, and Z∗n = {1, . . . , n − 1}
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Examples IV

Groups need not be commutative.

Define a group that is not commutative. Hint: Consider G as
the set of n × n full-rank matrices with elements in Q. Now,
define ◦ as matrix multiplication.
In the homework we shall define left and right inverses, and
left and right identity. We shall prove interesting properties
regarding these inverses and identities.
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Generator I

Consider the group (Z5,+)

Note that
2 added 0-times is 0
2 added 1-times is 2
2 added 2-times is 4
2 added 3-times is 1
2 added 4-times is 3
2 added 5-times is 0
(and so on)

We say that 2 generates (Z5,+) because we can generate the
entire set Z5 be repeatedly “+”-ing 2 to itself

Consider the group (Z∗7,×). Which elements in Z7 generate
the group? And which elements do not generate the group?
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Generator II

We will introduce a shorthand. By ak , we represent the

number
k-times︷ ︸︸ ︷

a ◦ a ◦· · · ◦ a
We define a0 = e, the identity of the group
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Repeated Squaring Technique

Let g be a generator of a group (G , ◦). Consider the following
algorithm.

Let n[0] := g , the identity of (G , ◦)
For i = 1 to k , do the following:

n[i ] := n[i − 1] ◦ n[i − 1]

At the termination of the algorithm, we have the following
n[0] = g , n[1] = g2, n[2] = g4, . . . , n[k] = g2k

Note that we only used the ◦ operation only k times in this
algorithm to generate this sequence
Let i be an integer in the range {0, . . . , 2k+1 − 1}
How to compute g i using (k + 1) additional ◦ operations?
Note: This gives us an algorithm to compute g i , where
i ∈ {0, . . . , 2k+1 − 1} using at most (2k + 1) ◦ operations!
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Why Repeated Squaring is Efficient?

Let (G , ◦) be a group generated by g

Suppose we are interested in computing g i

First Algorithm: Multiply g i-times to get g i . This method
takes O(i) time.
Second Algorithm: Use repeated squaring to compute g i . This
method takes O(log i) time.
Why is the first algorithm an exponential-time algorithm?
Why is the second algorithm a polynomial-time algorithm?
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Fields

Definition

A field is defined by a set of elements F, and two operators + and ·. The field
(F,+, ·) satisfies the following properties

1 Closure. For all a, b ∈ F, we have a+ b ∈ F and a · b ∈ F
2 Associativity. For all a, b, c ∈ F, we have (a+ b) + c = a+ (b + c) and

a · (b · c) = (a · b) · c
3 Commutativity. For all a, b ∈ F, we have a+ b = b + a and a · b = b · a
4 Additive and Multiplicative identities. There exists elements 0 ∈ F and

1 ∈ F such that for all a ∈ F, we have a+ 0 = a and a · 1 = a

5 Additive inverse. Every a ∈ F has (−a) ∈ F such that a+ (−a) = 0

6 Multiplicative inverse. Every 0 6= a ∈ G has (a−1) ∈ F such that
a · (a−1) = 1

7 Distributivity. For all a, b, c ∈ F, we have a · (b + c) = (a · b) + (a · c)
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Examples

(Zp,+,×) is a field when p is a prime, + is integer addition
mod p, and × is integer multiplication mod p

(Q,+,×) is a field
The first example mentioned above is a finite field, and the
second example mentioned above is an infinite field
Size of any finite field is pn, where p is a prime and n is a
natural number
Additional Reading: If interested, read about how the fields of
size p2, p3, . . . are defined
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