Lecture 03: One-time Pad for Bit-strings

- We will see an encryption algorithm called "One-time Pad" for bit-strings
- In the future, we shall extend its domain to general abstract objects (for example, groups)

One-time Pad I

Yesterday.

- Secret-key Generation: Alice and Bob met and sampled a secret-key sk uniformly at random from the set $\{0,1\}^{n}$, mathematically represented by sk $\sim\{0,1\}^{n}$

Today.

- Goal: Alice wants to send a message $m \in\{0,1\}^{n}$ to Bob over a public channel so that any eavesdropper cannot figure out the message m.
- Encryption: To achieve this goal, Alice computes a ciphertext c that encrypts the message m using the secret-key sk, mathematically represented by $c=\mathrm{Enc}_{\text {sk }}(m):=m \oplus$ sk. Here \oplus represents the bit-wise XOR of the bits of m and $s k$.
- Communication: Alice sends the cipher-text c to Bob over a public channel
- Decryption: Now, Bob wants to decrypt the cipher-text c to recover the message m. Mathematically, this step is represented by $m^{\prime}=\operatorname{Dec}_{\mathrm{sk}}(c):=c \oplus \mathrm{sk}$

One-time Pad II

- Correctness: Note that we will always have $m=m^{\prime}$, i.e., Bob always correctly recovers the message
- Note that in our case we always have $m=m^{\prime}$
- There are encryption schemes where with a small probability $m \neq m^{\prime}$ is possible, i.e., the encryption scheme is incorrect with a small probability
- Security: Later in the course we shall see how to mathematically prove the following statement.
"An adversary who gets the ciphertext c obtains no additional information about the message m sent by Alice."

One-time Pad III

Alice Bob

$$
m^{\prime}=\operatorname{Dec}_{\mathrm{sk}}(c):=c \oplus \mathrm{sk}
$$

Figure: Pictorial Summary of the One-time Pad Encryption Scheme.

Dropping one Restriction makes the task Trivial

- Suppose we insist only on correctness and not on security
- The trivial scheme where $\operatorname{Enc}_{\text {sk }}(m)=m$, i.e., the encryption of any message m using any secret key sk is the message itself, satisfies correctness. However, this scheme is completely insecure!
- Suppose we insist only on security and not on correctness
- The trivial scheme where $E n c_{\text {sk }}(m)=0$, i.e., the encryption of any message m using any secret key sk is 0 , satisfies the security constraint. However, Bob cannot correctly recover the origianl message m with certainty!
- So, the non-triviality is to simultaneously achieve correctness and security
- We are not trying to hide the fact that Alice sent a message to Bob
- We are trying to hide only the message that is being sent by Alice to Bob

Closing Remarks: Crucial Observation

- Fix a cipher-text c
- Consider any message m
- There exists a unique secret-key $\mathrm{sk}_{m, c}$ such that

- This observation shall be crucial to prove the security of the one-time pad private-key encryption scheme

