Lecture 02: Mathematical Basics (Probability)

- Sample Space: Ω is a set of outcomes (it can either be finite or infinite)
- $\bullet\,$ Random Variable: $\mathbb X$ is a random variable that assigns probabilities to outcomes

Example: Let $\Omega = \{\text{Heads}, \text{Tails}\}$. Let X be a random variable that outputs Heads with probability 1/3 and outputs Tails with probability 2/3

• The probability that $\mathbb X$ assigns to the outcome x is represented by

$$\mathbb{P}\left[\mathbb{X}=x\right]$$

Example: In the ongoing example $\mathbb{P}\left[\mathbb{X} = \text{Heads}\right] = 1/3$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let $f: \Omega \to \Omega'$ be a function
- $\bullet\,$ Let $\mathbb X$ be a random variable over the sample space $\mathbb X$
- We define a new random variable f(X) is over Ω' as follows

$$\mathbb{P}\left[f(\mathbb{X})=y\right] = \sum_{x \in \Omega: \ f(x)=y} \mathbb{P}\left[\mathbb{X}=x\right]$$

- Suppose $(\mathbb{X}_1, \mathbb{X}_2)$ is a random variable over $\Omega_1 \times \Omega_2$.
 - Intuitively, the random variable (X₁, X₂) takes values of the form (x₁, x₂), where the first coordinate lies in Ω₁, and the second coordinate lies in Ω₂

For example, let (X_1, X_2) represent the temperatures of West Lafayette and Lafayette. Their sample space is $\mathbb{Z} \times \mathbb{Z}$. Note that these two outcomes can be correlated with each other.

Joint Distribution and Marginal Distributions II

- Let $P_1: \Omega_1 \times \Omega_2 \to \Omega_1$ be the function $P_1(x_1, x_2) = x_1$ (the projection operator)
- So, the random variable P₁(X₁, X₂) is a probability distribution over the sample space Ω₁
- $\bullet\,$ This is represented simply as $\mathbb{X}_1,$ the marginal distribution of the first coordinate
- Similarly, we can define \mathbb{X}_2

向下 イヨト イヨト

Conditional Distribution

- Let $(\mathbb{X}_1,\mathbb{X}_2)$ be a joint distribution over the sample space $\Omega_1\times\Omega_2$
- We can define the distribution $(\mathbb{X}_1 \mid \mathbb{X}_2 = x_2)$ as follows
 - $\bullet\,$ This random variable is a distribution over the sample space Ω_1
 - The probability distribution is defined as follows

$$\mathbb{P}\left[\mathbb{X}_1 = x_1 \mid \mathbb{X}_2 = x_2\right] = \frac{\mathbb{P}\left[\mathbb{X}_1 = x_1, \mathbb{X}_2 = x_2\right]}{\sum_{x \in \Omega_1} \mathbb{P}\left[\mathbb{X}_1 = x, \mathbb{X}_2 = x_2\right]}$$

For example, conditioned on the temperature at Lafayette being 0, what is the conditional probability distribution of the temperature in West Lafayette?

・ 白 ・ ・ ヨ ・ ・ 日 ・

Theorem (Bayes' Rule)

Let $(\mathbb{X}_1, \mathbb{X}_2)$ be a joint distribution over the sample space (Ω_1, Ω_2) . Let $x_1 \in \Omega_1$ and $x_2 \in \Omega_2$ be such that $\mathbb{P}[\mathbb{X}_1 = x_1, \mathbb{X}_2 = x_2] > 0$. Then, the following holds.

$$\mathbb{P}\left[\mathbb{X}_1 = x_1 \mid \mathbb{X}_2 = x_2\right] = \frac{\mathbb{P}\left[\mathbb{X}_1 = x_1, \mathbb{X}_2 = x_2\right]}{\mathbb{P}\left[\mathbb{X}_2 = x_2\right]}$$

The random variables \mathbb{X}_1 and \mathbb{X}_2 are independent of each other if the distribution $(\mathbb{X}_1 \mid \mathbb{X}_2 = x_2)$ is identical to the random variable \mathbb{X}_1 , for all $x_2 \in \Omega_2$ such that $\mathbb{P}[\mathbb{X}_2 = x_2] > 0$ We can generalize the Bayes' Rule as follows.

Theorem (Chain Rule)

Let $(X_1, X_2, ..., X_n)$ be a joint distribution over the sample space $\Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$. For any $(x_1, ..., x_n) \in \Omega_1 \times \cdots \times \Omega_n$ we have

$$\mathbb{P}\left[\mathbb{X}_1 = x_1, \dots, \mathbb{X}_n = x_n\right] = \prod_{i=1}^n \mathbb{P}\left[\mathbb{X}_i = x_i \mid \mathbb{X}_{i-1} = x_{i-1}, \dots, \mathbb{X}_1 = x_1\right]$$

In which context do we foresee to use the Bayes' Rule to compute joint probability?

 Sometimes, the problem at hand will clearly state how to sample X₁ and then, conditioned on the fact that X₁ = x₁, it will state how to sample X₂. In such cases, we shall use the Bayes' rule to calculate

$$\mathbb{P}\left[\mathbb{X}_1 = x_1, \mathbb{X}_2 = x_2\right] = \mathbb{P}\left[\mathbb{X}_1 = x_1\right]\mathbb{P}\left[\mathbb{X}_2 = x_2|\mathbb{X}_1 = x_1\right]$$

• Let us consider an example.

• Suppose \mathbb{X}_1 is a random variable over $\Omega_1 = \{0, 1\}$ such that $\mathbb{P}[X_1 = 0] = 1/2$. Next, the random variable \mathbb{X}_2 is over $\Omega_2 = \{0, 1\}$ such that $\mathbb{P}[X_2 = x_1 | \mathbb{X}_1 = x_1] = 2/3$. Note that \mathbb{X}_2 is <u>biased towards</u> the outcome of \mathbb{X}_1 .

• What is the probability that we get $\mathbb{P}\left[\mathbb{X}_1=0,\mathbb{X}_2=1\right]?$

• To compute this probability, we shall use the Bayes' rule.

$$\mathbb{P}\left[\mathbb{X}_1=0\right]=1/2$$

Next, we know that

$$\mathbb{P}\left[\mathbb{X}_2=0|\mathbb{X}_1=0\right]=2/3$$

Therefore, we have $\mathbb{P}\left[\mathbb{X}_2=1|\mathbb{X}_1=0\right]=1/3.$ So, we get

$$\begin{split} \mathbb{P}\left[\mathbb{X}_1 = 0, \mathbb{X}_2 = 1\right] &= \mathbb{P}\left[\mathbb{X}_1 = 0\right] \mathbb{P}\left[\mathbb{X}_2 = 1 | \mathbb{X}_1 = 0\right] \\ &= (1/2) \cdot (1/3) = 1/6 \end{split}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Independence of Random Variables

- Consider a joint distribution $(\mathbb{X}_1,\mathbb{X}_2)$ over the sample space $\Omega_1\times\Omega_2$

$$\mathbb{P}\left[\mathbb{X}_1 = x_1\right] = \mathbb{P}\left[\mathbb{X}_1 = x_1 | \mathbb{X}_2 = x_2\right].$$

• Equivalently, the following condition is satisfied

$$\mathbb{P}\left[\mathbb{X}_1 = x_1\right] \cdot \mathbb{P}\left[\mathbb{X}_2 = x_2\right] = \mathbb{P}\left[\mathbb{X}_1 = x_1, \mathbb{X}_2 = x_2\right].$$

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let S be the random variable representing whether I studied for my exam. This random variable has sample space $\Omega_1 = \{Y, N\}$
- Let \mathbb{P} be the random variable representing whether I passed my exam This random variable has sample space $\Omega_2 = \{Y, N\}$
- Our sample space is $\Omega=\Omega_1\times\Omega_2$
- The joint distribution (\mathbb{S},\mathbb{P}) is represented in the next page

Probability: First Example II

5	р	$\mathbb{P}\left[\mathbb{S}=s,\mathbb{P}=p ight]$
Y	Y	1/2
Y	Ν	1/4
Ν	Y	0
Ν	Ν	1/4

白とくヨとく

≣ ⊁

Here are some interesting probability computations The probability that I pass.

$$\mathbb{P}\left[\mathbb{P}=\mathsf{Y}\right] = \mathbb{P}\left[\mathbb{S}=\mathsf{Y}, \mathbb{P}=\mathsf{Y}\right] + \mathbb{P}\left[\mathbb{S}=\mathsf{N}, \mathbb{P}=\mathsf{Y}\right]$$
$$= 1/2 + 0 = 1/2$$

< ∃⇒

The probability that I study.

$$\mathbb{P}\left[\mathbb{S} = \mathsf{Y}\right] = \mathbb{P}\left[\mathbb{S} = \mathsf{Y}, \mathbb{P} = \mathsf{Y}\right] + \mathbb{P}\left[\mathbb{S} = \mathsf{Y}, \mathbb{P} = \mathsf{N}\right]$$
$$= 1/2 + 1/4 = 3/4$$

The probability that I pass conditioned on the fact that I studied.

$$\mathbb{P}\left[\mathbb{P} = \mathsf{Y} \mid \mathbb{S} = \mathsf{Y}\right] = \frac{\mathbb{P}\left[\mathbb{P} = \mathsf{Y}, \mathbb{S} = \mathsf{Y}\right]}{\mathbb{P}\left[\mathbb{S} = \mathsf{Y}\right]}$$
$$= \frac{1/2}{3/4} = \frac{2}{3}$$

★ E ► < E ►</p>

- Let \mathbb{T} be the time of the day that I wake up. The random variable \mathbb{T} has sample space $\Omega_1 = \{4, 5, 6, 7, 8, 9, 10\}$
- Let $\mathbb B$ represent whether I have breakfast or not. The random variable $\mathbb B$ has sample space $\Omega_2=\{\mathsf{T},\mathsf{F}\}$
- Our sample space is $\Omega = \Omega_1 \times \Omega_2$
- $\bullet\,$ The joint distribution of (\mathbb{T},\mathbb{B}) is presented on the next page

Probability: Second Example II

t	b	$\mathbb{P}\left[\mathbb{T}=t,\mathbb{B}=b ight]$
4	Т	0.03
4	F	0
5	Т	0.02
5	F	0
6	Т	0.30
6	F	0.05
7	Т	0.20
7	F	0.10
8	Т	0.10
8	F	0.08
9	Т	0.05
9	F	0.05
10	Т	0
10	F	0.02

⊡ ► < ≣ ►

≣ ⊁

• What is the probability that I have breakfast conditioned on the fact that I wake up at or before 7?

Formally, what is $\mathbb{P}\left[\mathbb{B} = \mathsf{T} \mid \mathbb{T} \leqslant 7\right]$?