Homework 7

1. Safe Primes and Sophie Germain primes. (20 points) In the lecture we raised the concern that it might be inefficient to generate a random element e in the set $\{0,1, \ldots, \varphi(N)-1\}$ that is relatively prime to $\varphi(N)$, where N is the product of two prime number p and q. In this problem we shall try to understand why picking p and q as safe primes helps.

Recall the definition of safe primes. A prime $p=2 \alpha+1$ is a safe prime if α is also a prime. The prime α is referred to as a Sophie Germain prime. For example, $7=2 \cdot 3+1$. So, $p=7$ is a safe prime, and $\alpha=3$ is a Sophie Germain prime.
Suppose $p=2 \alpha+1$ and $q=2 \beta+1$ are distinct safe primes such that $\alpha, \beta>2$. Note that $\varphi(N)=4 \alpha \beta$. We are interested in counting the number of elements in the set $\mathbb{Z}_{\varphi(N)}^{*}$. Equivalently, the number of elements in $\{0,1, \ldots, \varphi(N)-1\}$ that are relatively prime to $\varphi(N)$. This number is given by the following formula.

$$
4 \alpha \beta\left(1-\frac{1}{2}\right)\left(1-\frac{1}{\alpha}\right)\left(1-\frac{1}{\beta}\right)
$$

(You can use the principle of inclusion and exclusion to prove this result. For this problem, assume that this result is given to you.)
If $p=2 \alpha+1$ and $q=2 \beta+1$ are distinct safe primes such that $\alpha, \beta>2$, then prove that

$$
\left(1-\frac{1}{2}\right)\left(1-\frac{1}{\alpha}\right)\left(1-\frac{1}{\beta}\right) \geqslant \frac{4}{15}
$$

(Basically, this result shows that a number drawn uniformly at random from the set $\{0,1, \ldots, \varphi(N)-1\}$ is relatively prime to $\varphi(N)$ with probability at least $4 / 15$.)

Solution.

2. Number of Sophie Germain primes. (10 points) It is conjectured that the number of Sophie Germain primes $<k$ is (roughly) equal to

$$
\frac{C k}{(\lg k)^{2}},
$$

where C is a suitable positive constant. How many n-bit Sophie Germain primes are there?

Solution.

3. Modification of RSA Encryption. (20 points) Let p and q be distinct prime numbers and $N=p \cdot q$. In the class, to encrypt a message m, we appended a random string r to its prefix. We needed to ensure that the resulting number $(r \| m) \in \mathbb{Z}_{N}^{*}$. That is, we need $(r \| m)$ to be relatively prime to both p and q.
In the class, we used the following trick. We ensured that $(r \| m)$ is smaller than both p and q. This technique ensures that $(r \| m)$ is relatively prime to both p and q. For example, if p and q are n-bit primes, then we were able to encrypt (roughly) ($n / 2$)-bit message m using ($n / 2$)-bit randomness r. In this problem we shall develop a more efficient encryption technique.
Suppose $N \geqslant 2^{2 t}$. Let the message $m \in\{0,1\}^{3 t / 2}$. Pick a random $r \stackrel{\&}{\&}_{\leftarrow}^{\leftarrow}\{0,1\}^{t / 2}$. We want to argue that the probability of $(r \| m)$ being relatively prime to N is very high.
Prove that, for any $m \in\{0,1\}^{3 t / 2}$, we have

$$
\underset{r \uplus}{\underset{\leftarrow}{\uplus}\{0,1\}^{t / 2}} \mathbb{\mathbb { P }}[\operatorname{gcd}(r \| m, N)=1] \geqslant 1-\frac{2}{2^{t / 2}}
$$

(This result shall allow using (roughly) ($3 n / 2$)-bit messages m with ($n / 2$)-bit randomness r)
Solution.

Collaborators :

