Homework 6

1. Chinese Remainder Theorem. Let p and q be distinct prime number. Let $\alpha \in$ $\{0,1, \ldots, p-1\}$ and $\beta \in\{0,1, \ldots, q-1\}$. Then, we have seen earlier that there exists an integer x such that it simultaneously satisfies $x=\alpha \bmod p$ and $x=\beta \bmod q$. For brevity, we shall refer to this as $x=(\alpha, \beta) \bmod (p, q)$.
In this problem, we shall prove a few interesting properties of the result and the fact that there exists a unique $x \in\{0,1, \ldots, N-1\}$, where $N=p \dot{q}$, that simultaneously satisfies the two equation.
(a) (5 points) Suppose that the integers x and y satisfy $x=(\alpha, \beta) \bmod (p, q)$ and $y=\left(\alpha^{\prime}, \beta^{\prime}\right) \bmod (p, q)$. Prove that the integer $x-y=\left(\alpha-\alpha^{\prime}, \beta-\beta^{\prime}\right)$ $\bmod (p, q)$.
Solution.
(b) (5 points) Suppose that the integers x and y satisfy $x=(\alpha, \beta) \bmod (p, q)$ and $y=\left(\alpha^{\prime}, \beta^{\prime}\right) \bmod (p, q)$. Prove that the integer $x \cdot y=\left(\alpha \cdot \alpha^{\prime}, \beta \cdot \beta^{\prime}\right) \bmod (p, q)$. Solution.
(c) (5 points) Suppose x and x^{\prime} are integers such that $x=(\alpha, \beta) \bmod (p, q)$ and $x^{\prime}=(\alpha, \beta) \bmod (p, q)$. Prove that N divides $\left(x-x^{\prime}\right)$, where $N=p \cdot q$. Solution.
(d) (5 points) Prove that for every $\alpha \in\{0,1, \ldots, p-1\}$ and $\beta \in\{0,1, \ldots, q-1\}$ there exists a unique $x \in\{0,1, \ldots, N-1\}$ such that $x=(\alpha, \beta) \bmod (p, q)$. Solution.
(e) (5 points) Prove that for every element $x \in\{0,1 \ldots, N-1\}$ there exists unique (α, β) where $\alpha \in\{0,1, \ldots, p-1\}$ and $\beta \in\{0,1, \ldots, q-1\}$ such that $x=(\alpha, \beta)$ $\bmod (p, q)$.
Solution.
2. Proving \mathbb{Z}_{N}^{*} is a group. Let p and q be two prime numbers, and $N=p \cdot q$. Define

$$
\mathbb{Z}_{N}^{*}=\{x: 0 \leqslant x<N, \operatorname{gcd}(x, N)=1\}
$$

Let \times be integer multiplication $\bmod N$. We shall prove that $\left(\mathbb{Z}_{N}^{*}, \times\right)$ is a group.
Our starting point is the result of Problem 1.e. that shows that every integer $x \in$ $\{0,1, \ldots, N-1\}$ has a unique (α, β) associated with it, such that $\alpha \in\{0, \ldots, p-1\}$, $\beta \in\{0, \ldots, q-1\}$, and $x=(\alpha, \beta) \bmod (p, q)$.
(a) (5 points) Prove that $x \in \mathbb{Z}_{N}^{*}$ if and only if $x=(\alpha, \beta) \bmod (p, q)$, such that $\alpha \in\{1, \ldots, p-1\}$ and $\beta \in\{1, \ldots, q-1\}$. Remark: This result proves that $\left|\mathbb{Z}_{N}^{*}\right|=(p-1)(q-1)$. Solution.
(b) (5 points) (Closure) Suppose $x=(\alpha, \beta) \bmod (p, q)$ and $y=\left(\alpha^{\prime}, \beta^{\prime}\right) \bmod (p, q)$. Prove that $x \times y \in \mathbb{Z}_{N}^{*}$.
Solution.
(c) (8 points) (Existence of identity) Find an element $e \in \mathbb{Z}_{N}^{*}$ such that $e=(\alpha, \beta)$ $\bmod (p, q)$ and for all $x \in \mathbb{Z}_{N}^{*}$ we have $e \times x=x$. (That is, e is the identity element)
Solution.
(d) (8 points) (Multiplicative Inverse) Suppose $x=(\alpha, \beta) \bmod (p, q)$ and $x \in \mathbb{Z}_{N}^{*}$. What is the element $y \in \mathbb{Z}_{N}^{*}$ such that $x \times y=e$? Solution.
3. An Observation about Solving Equations. Let p and q be distinct primes, and $N=p \cdot q$. Suppose there exists one solution $x \in\{0,1, \ldots, N-1\}$ such that $x^{2}=a$ $\bmod N$. Define

$$
S(a)=\left\{X: X \in\{0,1, \ldots, N-1\}, X^{2}=a \bmod N\right\}
$$

That is, $S(a)$ is the set of all solutions of $X^{2}=a \bmod N$, where $X \in\{0,1, \ldots, N-1\}$.
(a) (8 points) If $a \in \mathbb{Z}_{N}^{*}$ then prove that $|S(a)|=4$.

Solution.
(b) (8 points) If a is divisible by p or q, then prove that we have $|S(a)|=2$. Solution.
(c) (8 points) If $a=0$, then prove that we have $|S(a)|=1$. Solution.
4. Proving Bijection of X^{i}. (25 points) Suppose p and q are primes, and $N=p \cdot q$. We define \times as integer multiplication $\bmod N$. The objective of this problem is to prove that the function $X^{i}: \mathbb{Z}_{N}^{*} \rightarrow \mathbb{Z}_{N}^{*}$ is a bijection, if i is relatively prime to ($p-1$) and $(q-1)$.
Suppose $X \in \mathbb{Z}_{N}^{*}$ such that $X=(\alpha, \beta) \bmod (p, q), \alpha \in \mathbb{Z}_{p}^{*}$, and $\beta \in \mathbb{Z}_{q}^{*}$. Suppose Y is a different element $\in \mathbb{Z}_{N}^{*}$ such that $Y=(\gamma, \delta) \bmod (p, q)$.
If possible let i be relatively prime to $(p-1)$ and $(q-1)$, and $X^{i}=Y^{i}$. If this condition is true, then we have $\left(\alpha^{i}, \beta^{i}\right)=\left(\gamma^{i}, \delta^{i}\right) \bmod (p, q)$. This statement is equivalent to $0=\left(\alpha^{i}-\gamma^{i}, \beta^{i}-\delta^{i}\right) \bmod (p, q)$. By problem 3.c. we know that this equation has a unique solution $\alpha^{i}=\gamma^{i} \bmod p$ and $\beta^{i}=\delta^{i} \bmod q$.
Now, all that remains is to prove the following result. Suppose α, γ are distinct elements in \mathbb{Z}_{p}^{*}. If $\operatorname{gcd}(i, p-1)=1$, then it is impossible to have $\alpha^{i}=\gamma^{i} \bmod p$. In your proof, you can assume that $\mathbb{Z}_{p}^{*}=\left\{g^{0}, g^{1}, \ldots, g^{p-2}\right\}$, for some $g \in \mathbb{Z}_{p}^{*}$.

Solution.

Collaborators :

