Homework 6

1. Chinese Remainder Theorem. Let p and q be distinct prime number. Let $\alpha \in \{0, 1, \ldots, p-1\}$ and $\beta \in \{0, 1, \ldots, q-1\}$. Then, we have seen earlier that there exists an integer x such that it simultaneously satisfies $x = \alpha \mod p$ and $x = \beta \mod q$. For brevity, we shall refer to this as $x = (\alpha, \beta) \mod (p, q)$.

In this problem, we shall prove a few interesting properties of the result and the fact that there exists a <u>unique</u> $x \in \{0, 1, ..., N-1\}$, where $N = p\dot{q}$, that simultaneously satisfies the two equation.

(a) (5 points) Suppose that the integers x and y satisfy x = (α, β) mod (p,q) and y = (α', β') mod (p,q). Prove that the integer x - y = (α - α', β - β') mod (p,q).
Solution.

(b) (5 points) Suppose that the integers x and y satisfy $x = (\alpha, \beta) \mod (p, q)$ and $y = (\alpha', \beta') \mod (p, q)$. Prove that the integer $x \cdot y = (\alpha \cdot \alpha', \beta \cdot \beta') \mod (p, q)$. Solution. (c) (5 points) Suppose x and x' are integers such that $x = (\alpha, \beta) \mod (p, q)$ and $x' = (\alpha, \beta) \mod (p, q)$. Prove that N divides (x - x'), where $N = p \cdot q$. Solution. (d) (5 points) Prove that for every $\alpha \in \{0, 1, \dots, p-1\}$ and $\beta \in \{0, 1, \dots, q-1\}$ there exists a <u>unique</u> $x \in \{0, 1, \dots, N-1\}$ such that $x = (\alpha, \beta) \mod (p, q)$. Solution. (e) (5 points) Prove that for every element $x \in \{0, 1, ..., N-1\}$ there exists <u>unique</u> (α, β) where $\alpha \in \{0, 1, ..., p-1\}$ and $\beta \in \{0, 1, ..., q-1\}$ such that $x = (\alpha, \beta)$ mod (p, q). Solution. 2. Proving \mathbb{Z}_N^* is a group. Let p and q be two prime numbers, and $N = p \cdot q$. Define

$$\mathbb{Z}_N^* = \left\{ x \colon 0 \leqslant x < N, \gcd(x, N) = 1 \right\}$$

Let \times be integer multiplication mod N. We shall prove that (\mathbb{Z}_N^*, \times) is a group.

Our starting point is the result of Problem 1.e. that shows that every integer $x \in \{0, 1, \ldots, N-1\}$ has a unique (α, β) associated with it, such that $\alpha \in \{0, \ldots, p-1\}$, $\beta \in \{0, \ldots, q-1\}$, and $x = (\alpha, \beta) \mod (p, q)$.

(a) (5 points) Prove that $x \in \mathbb{Z}_N^*$ if and only if $x = (\alpha, \beta) \mod (p, q)$, such that $\alpha \in \{1, \ldots, p-1\}$ and $\beta \in \{1, \ldots, q-1\}$. Remark: This result proves that $|\mathbb{Z}_N^*| = (p-1)(q-1)$. Solution.

(b) (5 points) (Closure) Suppose $x = (\alpha, \beta) \mod (p, q)$ and $y = (\alpha', \beta') \mod (p, q)$. Prove that $x \times y \in \mathbb{Z}_N^*$. Solution. (c) (8 points) (Existence of identity) Find an element $e \in \mathbb{Z}_N^*$ such that $e = (\alpha, \beta) \mod (p, q)$ and for all $x \in \mathbb{Z}_N^*$ we have $e \times x = x$. (That is, e is the identity element)

Solution.

(d) (8 points) (Multiplicative Inverse) Suppose $x = (\alpha, \beta) \mod (p, q)$ and $x \in \mathbb{Z}_N^*$. What is the element $y \in \mathbb{Z}_N^*$ such that $x \times y = e$? Solution. 3. An Observation about Solving Equations. Let p and q be distinct primes, and $N = p \cdot q$. Suppose there exists one solution $x \in \{0, 1, ..., N-1\}$ such that $x^2 = a \mod N$. Define

$$S(a) = \left\{ X \colon X \in \{0, 1, \dots, N-1\}, X^2 = a \mod N \right\}$$

That is, S(a) is the set of all solutions of $X^2 = a \mod N$, where $X \in \{0, 1, \dots, N-1\}$.

(a) (8 points) If $a \in \mathbb{Z}_N^*$ then prove that |S(a)| = 4. Solution. (b) (8 points) If a is divisible by p or q, then prove that we have |S(a)| = 2. Solution. (c) (8 points) If a = 0, then prove that we have |S(a)| = 1. Solution. 4. Proving Bijection of X^i . (25 points) Suppose p and q are primes, and $N = p \cdot q$. We define \times as integer multiplication mod N. The objective of this problem is to prove that the function $X^i \colon \mathbb{Z}_N^* \to \mathbb{Z}_N^*$ is a bijection, if i is relatively prime to (p-1) and (q-1).

Suppose $X \in \mathbb{Z}_N^*$ such that $X = (\alpha, \beta) \mod (p, q), \alpha \in \mathbb{Z}_p^*$, and $\beta \in \mathbb{Z}_q^*$. Suppose Y is a different element $\in \mathbb{Z}_N^*$ such that $Y = (\gamma, \delta) \mod (p, q)$.

If possible let *i* be relatively prime to (p-1) and (q-1), and $X^i = Y^i$. If this condition is true, then we have $(\alpha^i, \beta^i) = (\gamma^i, \delta^i) \mod (p, q)$. This statement is equivalent to $0 = (\alpha^i - \gamma^i, \beta^i - \delta^i) \mod (p, q)$. By problem 3.c. we know that this equation has a unique solution $\alpha^i = \gamma^i \mod p$ and $\beta^i = \delta^i \mod q$.

Now, all that remains is to prove the following result. Suppose α, γ are distinct elements in \mathbb{Z}_p^* . If gcd(i, p-1) = 1, then it is impossible to have $\alpha^i = \gamma^i \mod p$. In your proof, you can assume that $\mathbb{Z}_p^* = \{g^0, g^1, \ldots, g^{p-2}\}$, for some $g \in \mathbb{Z}_p^*$.

Solution.

Collaborators :