Homework 5

1. Stretching PRG Output. (10 points) Suppose we are given a length-doubling PRG G such that

$$G: \{0,1\}^B \to \{0,1\}^{2B}$$

Using G, construct a new PRG G' such that

$$G': \{0,1\}^B \to \{0,1\}^{100B}$$

(Remark: We do not need a security proof. You should only use the PRG G to construct the new PRG G'. In particular, you should not use any other cryptographic primitive like one-way function etc.)

Solution.

- 2. New Pseudorandom Function Family. Let G be a length-doubling PRG $G: \{0,1\}^B \to \{0,1\}^{2B}$. Recall the basic GGM PRF construction presented below.
 - Define $G(x) = (G_0(x), G_1(x))$ where $G_0, G_1 : \{0, 1\}^B \to \{0, 1\}^B$
 - We define $g_{\mathsf{id}}(x_1, x_2, \dots, x_n)$ as $G_{x_n}(\dots, G_{x_2}(G_{x_1}(\mathsf{id}))\dots)$ where $\mathsf{id} \xleftarrow{\$} \{0, 1\}^B$.

Recall that in the class we studied that g_{id} is a PRF family for $\{0,1\}^n \to \{0,1\}^B$, for a fixed value of n when the key id is picked uniformly at random from the set $\{0,1\}^B$.

(a) (6 points) Why is the above-mentioned GGM construction not a pseudorandom function family from the domain $\{0,1\}^*$ to the range $\{0,1\}^B$? Solution.

(b) (13 points) Given a length-doubling PRG $G: \{0,1\}^B \to \{0,1\}^{2B}$, construct a PRF family from the domain $\{0,1\}^n$ to the range $\{0,1\}^{100B}$. (Remark: Again, in this problem, do not use any other cryptographic primitive like one-way function etc. You should only use the PRG G in your proposed construction.) Solution. (c) (6 points) Consider the following function family $\{h_1, \ldots, h_\alpha\}$ from the domain $\{0,1\}^*$ to the range $\{0,1\}^B$. We define $h_{\mathsf{id}}(x) = g_{\mathsf{id}}(x, [|x||]_2)$, for $k \in \{1, 2, \ldots, \alpha\}$. Show that $\{h_1, \ldots, h_\alpha\}$ is <u>not</u> a secure PRF from $\{0,1\}^*$ to the range $\{0,1\}^B$.

(*Note*: The expression $[|x|]_2$ represents the length of x in n-bit binary expression.) Solution.

- 3. Variant of Pseudorandom Function Family. Let G be a length-doubling PRG $G: \{0,1\}^B \to \{0,1\}^{2B}$, recall the GGM construction taught in class to construct PRF family from $\{0,1\}^* \to \{0,1\}^T$
 - Define $G(x) = (G_0(x), G_1(x))$ where $G_0, G_1 : \{0, 1\}^B \to \{0, 1\}^B$
 - Let $G': \{0,1\}^B \to \{0,1\}^T$ be a PRG.
 - We define $g_{\mathsf{id}}(x_1, x_2, \dots, x_n)$ as $G'(G_{x_n}(\dots, G_{x_2}(G_{x_1}(\mathsf{id}))\dots))$ where $\mathsf{id} \xleftarrow{\$} \{0, 1\}^B$.

(15 points) Prove that the above-mentioned PRF construction is not secure when G' = G.

Solution.

4. **OWF.** (15 points) Let $f : \{0,1\}^n \to \{0,1\}^n$ be a one-way function. Define $g : \{0,1\}^n \to \{0,1\}^{n+1}$ as

$$g(x) = f(x) \| 0$$

where $x \in \{0, 1\}^n$. Show that g is also a one-way function.

Hint. Suppose there exists an efficient adversary \mathcal{A} that inverts the function g. You should now construct a new efficient adversary \mathcal{A}' that uses \mathcal{A} as a subroutine to invert the function f. Solution.

- 5. Encryption using Random Functions. Let \mathcal{F} be the set of all functions $\{0,1\}^n \to \{0,1\}^n$. Consider the following private-key encryption scheme.
 - Gen(): Return sk = F uniformly at random from the set \mathcal{F}
 - $\operatorname{Enc}_{\operatorname{sk}}(m)$: Return (c, r), where r is chosen uniformly at random from $\{0, 1\}^n$, $c = m \oplus F(r)$, and $\operatorname{sk} = F$.
 - $\mathsf{Dec}_{\mathsf{sk}}(\widetilde{c},\widetilde{r})$: Return $\widetilde{c} \oplus F(\widetilde{r})$.
 - (a) (12 points) Suppose we want to ensure that even if we make 10^9 calls to the encryption algorithm, all randomness r that are chosen are distinct with probability $1 2^{-100}$. What value of n shall you choose? Solution.

(b) (8 points) Conditioned on the fact that all randomness r in the encryption schemes are distinct, prove that this scheme is secure. Solution.

- 6. Attack on an Encryption Scheme. (15 points) Let \mathcal{F} be the set of all function $\{0,1\}^n \to \{0,1\}^n$. Consider the following private-key encryption scheme.
 - Gen(): Return $\mathsf{sk} = F$ chosen uniformly at random from the set \mathcal{F}
 - $Enc_{sk}(m)$: Return $m \oplus F(m)$, where sk = F

We have knowingly not defined the decryption scheme because it might not be efficient to decrypt this scheme even given sk = F! However, the encryption algorithm itself has an issue.

Prove that the encryption scheme is not secure. Solution.

Collaborators :