Homework 5

1. **Stretching PRG Output.** (10 points) Suppose we are given a length-doubling PRG G such that

$$G : \{0, 1\}^B \rightarrow \{0, 1\}^{2B}$$

Using G, construct a new PRG G' such that

$$G' : \{0, 1\}^B \rightarrow \{0, 1\}^{100B}$$

(Remark: We do not need a security proof. You should only use the PRG G to construct the new PRG G'. In particular, you should not use any other cryptographic primitive like one-way function etc.)

Solution.
2. **New Pseudorandom Function Family.** Let G be a length-doubling PRG $G : \{0,1\}^B \rightarrow \{0,1\}^{2B}$. Recall the basic GGM PRF construction presented below.

- Define $G(x) = (G_0(x), G_1(x))$ where $G_0, G_1 : \{0,1\}^B \rightarrow \{0,1\}^B$
- We define $g_{id}(x_1, x_2, \ldots, x_n)$ as $G_{x_n}(\ldots G_{x_2}(G_{x_1}(id))\ldots)$ where $id \overset{\$}{\leftarrow} \{0,1\}^B$.

Recall that in the class we studied that g_{id} is a PRF family for $\{0,1\}^n \rightarrow \{0,1\}^B$, for a fixed value of n when the key id is picked uniformly at random from the set $\{0,1\}^B$.

(a) (6 points) Why is the above-mentioned GGM construction not a pseudorandom function family from the domain $\{0,1\}^*$ to the range $\{0,1\}^B$?

Solution.
(b) (13 points) Given a length-doubling PRG \(G : \{0, 1\}^B \rightarrow \{0, 1\}^{2B} \), construct a PRF family from the domain \(\{0, 1\}^n \) to the range \(\{0, 1\}^{100B} \).

(Remark: Again, in this problem, do not use any other cryptographic primitive like one-way function etc. You should only use the PRG \(G \) in your proposed construction.)

Solution.
(c) (6 points) Consider the following function family \{h_1, \ldots, h_\alpha\} from the domain \{0,1\}^* to the range \{0,1\}^B. We define \(h_{id}(x) = g_{id}(x, \lfloor |x| \rfloor_2) \), for \(k \in \{1,2,\ldots,\alpha\} \). Show that \{h_1, \ldots, h_\alpha\} is not a secure PRF from \{0,1\}^* to the range \{0,1\}^B.

(Note: The expression \(\lfloor |x| \rfloor_2 \) represents the length of \(x \) in \(n \)-bit binary expression.)

Solution.
3. **Variant of Pseudorandom Function Family.** Let G be a length-doubling PRG $G: \{0, 1\}^B \rightarrow \{0, 1\}^{2B}$, recall the GGM construction taught in class to construct PRF family from $\{0, 1\}^* \rightarrow \{0, 1\}^T$

- Define $G(x) = (G_0(x), G_1(x))$ where $G_0, G_1 : \{0, 1\}^B \rightarrow \{0, 1\}^B$
- Let $G' : \{0, 1\}^B \rightarrow \{0, 1\}^T$ be a PRG.
- We define $g_{id}(x_1, x_2, \ldots, x_n)$ as $G'(G_{x_n}(\ldots G_{x_2}(G_{x_1}(id))\ldots))$
 where $id \leftarrow \{0, 1\}^B$.

(15 points) Prove that the above-mentioned PRF construction is not secure when $G' = G$.

Solution.
4. **OWF.** (15 points) Let \(f : \{0,1\}^n \rightarrow \{0,1\}^n \) be a one-way function. Define \(g : \{0,1\}^n \rightarrow \{0,1\}^{n+1} \) as
\[
g(x) = f(x) \|
\]
where \(x \in \{0,1\}^n \). Show that \(g \) is also a one-way function.

Hint. Suppose there exists an efficient adversary \(A \) that inverts the function \(g \). You should now construct a new efficient adversary \(A' \) that uses \(A \) as a subroutine to invert the function \(f \).

Solution.
5. **Encryption using Random Functions.** Let \(\mathcal{F} \) be the set of all functions \(\{0, 1\}^n \rightarrow \{0, 1\}^n \). Consider the following private-key encryption scheme.

- **Gen()**: Return \(\text{sk} = F \) uniformly at random from the set \(\mathcal{F} \)
- **Enc_{sk}(m)**: Return \((c, r)\), where \(r \) is chosen uniformly at random from \(\{0, 1\}^n \), \(c = m \oplus F(r) \), and \(\text{sk} = F \).
- **Dec_{sk}(\tilde{c}, \tilde{r})**: Return \(\tilde{c} \oplus F(\tilde{r}) \).

(a) (12 points) Suppose we want to ensure that even if we make \(10^9 \) calls to the encryption algorithm, all randomness \(r \) that are chosen are distinct with probability \(1 - 2^{-100} \). What value of \(n \) shall you choose?

Solution.
(b) (8 points) Conditioned on the fact that all randomness r in the encryption schemes are distinct, prove that this scheme is secure.

Solution.
6. **Attack on an Encryption Scheme.** (15 points) Let \mathcal{F} be the set of all function $\{0,1\}^n \to \{0,1\}^n$. Consider the following private-key encryption scheme.

- **Gen()**: Return $sk = F$ chosen uniformly at random from the set \mathcal{F}
- **Enc_{sk}(m)**: Return $m \oplus F(m)$, where $sk = F$

We have knowingly not defined the decryption scheme because it might not be efficient to decrypt this scheme even given $sk = F$! However, the encryption algorithm itself has an issue.

Prove that the encryption scheme is not secure.

Solution.
Collaborators: