Homework 4

1. Lagrange Interpolation. We want to derive a part of the Chinese Remainder Theorem using principles of Lagrange Interpolation. Our goal is the following

Suppose p and q are two distinct primes. Suppose $a \in\{0, \ldots, p-1\}$ and $b \in$ $\{0, \ldots, q-1\}$. We want to find a natural number x such that

$$
x \quad(\bmod p)=a \text { and } x \quad(\bmod q)=b
$$

(a) (10 points) Find a natural number x_{p} such that: $x_{p}(\bmod p)=1$ and x_{p} $(\bmod q)=0$.

Solution.

(b) (12 points) Find a natural number x_{q} such that : $x_{q}(\bmod p)=0$ and x_{q} $(\bmod q)=1$.
Solution.
(c) $(5$ points) Find a natural number x such that : $x(\bmod p)=a$ and $x(\bmod q)=$ b.

Solution.
2. A bit of Counting. In this problem, we will do a bit of counting related to polynomials that pass through a given set of points in the plane.
We are working over the field $\left(\mathbb{Z}_{p},+, \times\right)$, where p is a prime number. Let \mathcal{P}_{t} be the set of all polynomials in the indeterminate X with degree $<t$ and coefficients in \mathbb{Z}_{p}.
(a) (10 points) Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$, and $\left(x_{t}, y_{t}\right)$ be t points in the plane \mathbb{Z}_{p}^{2}. We have that $x_{i} \neq x_{j}$ for all $i \neq j$, that is, the first coordinates of the points are all distinct.
Prove that there exists a unique polynomial in \mathcal{P}_{t} that passes through these t points.
(Hint: Use Lagrange Interpolation and Schwartz-Zippel Lemma.)

Solution.

(b) (10 points) Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$, and $\left(x_{t-1}, y_{t-1}\right)$ be $(t-1)$ points in the plane \mathbb{Z}_{p}^{2}. We have that $x_{i} \neq x_{j}$ for all $i \neq j$, that is, the first coordinates of the points are all distinct.
Prove that there are p polynomials in \mathcal{P}_{t} that pass through these $(t-1)$ points. Solution.
(c) (10 points) Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$, and $\left(x_{k}, y_{k}\right)$ be k points in the plane \mathbb{Z}_{p}^{2}, where $k \leqslant t$. We have that $x_{i} \neq x_{j}$ for all $i \neq j$, that is, the first coordinates of the points are all distinct.
Prove that there are p^{t-k} polynomials in \mathcal{P}_{t} that pass through these k points.

Solution.

3. An Illustrative Execution of Shamir's Secret Sharing Scheme. We shall work over the field $\left(\mathbb{Z}_{7},+, \times\right)$. We are interested in sharing a secret among 6 parties such that any 4 parties can reconstruct the secret, but no subset of 3 parties gain any additional information about the secret.

Suppose the secret is $s=5$. The random polynomial of degree <4 that is chosen during the secret sharing steps is $p(X)=2 X^{2}+3 X+5$.
(a) (6 points) What are the respective secret shares of parties $1,2,3,4,5$, and 6 ? Solution.
(b) (10 points) Suppose parties 1, 3, 5, and 6 are interested in reconstructing the secret. Run Lagrange Interpolation algorithm as explained in the class.
(Remark: It is essential to show the step-wise reconstruction procedure to score full points. In particular, you need to write down the polynomials $p_{1}(X), p_{2}(X), p_{3}(X)$, and $p_{4}(X)$.)

Solution.

(c) (7 points) Suppose parties 1,3 , and 5 get together. Let $q_{\widetilde{s}}(X)$ be the polynomial that is consistent with their shares and the point $(0, \widetilde{s})$, for each $\widetilde{s} \in \mathbb{Z}_{p}$. Write down the polynomials $q_{0}(X), q_{1}(X), \ldots, q_{6}(X)$.
Solution.
4. (20 points) Privacy Concern. In the class, a few students proposed that we restrict Shamir's Secret Sharing scheme to use only polynomials of degree $(t-1)$ instead of all polynomials of degree $<t$. We will demonstrate a security flaw with this modified scheme.
Suppose $t=3$ and we are working over $\left(\mathbb{Z}_{5},+, \times\right)$. A priori, we have $\mathbb{P}[S=s]=\frac{1}{5}$, for all secrets $s \in \mathbb{Z}_{5}$. Assume that $p(X)=X^{2}+1$ was the polynomial used for secret sharing.
Suppose party 1 and party 3 get together. Given their secret shares, what is the a posteriori probability of each secret?
Solution.

Collaborators :

