1. Lagrange Interpolation. We want to derive a part of the Chinese Remainder Theorem using principles of Lagrange Interpolation. Our goal is the following

Suppose p and q are two distinct primes. Suppose $a \in \{0, \ldots, p - 1\}$ and $b \in \{0, \ldots, q - 1\}$. We want to find a natural number x such that

$$x \pmod{p} = a \quad \text{and} \quad x \pmod{q} = b$$

(a) (10 points) Find a natural number x_p such that : $x_p \pmod{p} = 1$ and $x_p \pmod{q} = 0$.

Solution.
(b) (12 points) Find a natural number x_q such that: $x_q \pmod{p} = 0$ and $x_q \pmod{q} = 1$.

Solution.
(c) (5 points) Find a natural number x such that: $x \pmod{p} = a$ and $x \pmod{q} = b$.

Solution.
2. **A bit of Counting.** In this problem, we will do a bit of counting related to polynomials that pass through a given set of points in the plane.

We are working over the field \((\mathbb{Z}_p, +, \times)\), where \(p\) is a prime number. Let \(\mathcal{P}_t\) be the set of all polynomials in the indeterminate \(X\) with degree < \(t\) and coefficients in \(\mathbb{Z}_p\).

(a) (10 points) Let \((x_1, y_1), (x_2, y_2), \ldots, (x_t, y_t)\) be \(t\) points in the plane \(\mathbb{Z}_p^2\). We have that \(x_i \neq x_j\) for all \(i \neq j\), that is, the first coordinates of the points are all distinct.

Prove that there exists a *unique polynomial* in \(\mathcal{P}_t\) that passes through these \(t\) points.

(Hint: Use Lagrange Interpolation and Schwartz–Zippel Lemma.)

Solution.
(b) (10 points) Let \((x_1, y_1), (x_2, y_2), \ldots, (x_{t-1}, y_{t-1})\) be \(t - 1\) points in the plane \(\mathbb{Z}_p^2\). We have that \(x_i \neq x_j\) for all \(i \neq j\), that is, the first coordinates of the points are all distinct.

Prove that there are \(p\) polynomials in \(\mathcal{P}_t\) that pass through these \((t - 1)\) points.

Solution.
(c) (10 points) Let \((x_1, y_1), (x_2, y_2), \ldots, (x_k, y_k)\) be \(k\) points in the plane \(\mathbb{Z}_p^2\), where \(k \leq t\). We have that \(x_i \neq x_j\) for all \(i \neq j\), that is, the first coordinates of the points are all distinct. Prove that there are \(p^{t-k}\) polynomials in \(\mathcal{P}_t\) that pass through these \(k\) points.

Solution.
3. **An Illustrative Execution of Shamir’s Secret Sharing Scheme.** We shall work over the field \((\mathbb{Z}_7, +, \times)\). We are interested in sharing a secret among 6 parties such that any 4 parties can reconstruct the secret, but no subset of 3 parties gain any additional information about the secret.

Suppose the secret is \(s = 5\). The random polynomial of degree < 4 that is chosen during the secret sharing steps is \(p(X) = 2X^2 + 3X + 5\).

(a) (6 points) What are the respective secret shares of parties 1, 2, 3, 4, 5, and 6?
Solution.
(b) (10 points) Suppose parties 1, 3, 5, and 6 are interested in reconstructing the secret. Run Lagrange Interpolation algorithm as explained in the class.

(Remark: It is essential to show the step-wise reconstruction procedure to score full points. In particular, you need to write down the polynomials \(p_1(X), p_2(X), p_3(X), \) and \(p_4(X). \))

Solution.
(c) (7 points) Suppose parties 1, 3, and 5 get together. Let \(q_{\tilde{s}}(X) \) be the polynomial that is consistent with their shares and the point \((0, \tilde{s})\), for each \(\tilde{s} \in \mathbb{Z}_p \). Write down the polynomials \(q_0(X), q_1(X), \ldots, q_6(X) \).

Solution.
4. (20 points) **Privacy Concern.** In the class, a few students proposed that we restrict Shamir’s Secret Sharing scheme to use only polynomials of degree \((t - 1)\) instead of all polynomials of degree < \(t\). We will demonstrate a security flaw with this modified scheme.

Suppose \(t = 3\) and we are working over \((\mathbb{Z}_5, +, \times)\). A priori, we have \(P[S = s] = \frac{1}{5}\), for all secrets \(s \in \mathbb{Z}_5\). Assume that \(p(X) = X^2 + 1\) was the polynomial used for secret sharing.

Suppose party 1 and party 3 get together. Given their secret shares, what is the a posteriori probability of each secret?

Solution.
Collaborators: