Homework 2

- 1. Some properties of (\mathbb{Z}_p^*, \times) . Recall that \mathbb{Z}_p^* is the set $\{1, \ldots, p-1\}$ and \times is integer multiplication mod p, where p is a prime. For example, if p = 5, then 2×3 is 1. In this problem we shall prove that (\mathbb{Z}_p^*, \times) is a group. The only part missing in the lecture was the proof that every $x \in \mathbb{Z}_p^*$ has an inverse. We will find the inverse of any element $x \in \mathbb{Z}_p^*$.
 - (a) (10 points) Recall $\binom{p}{k} := \frac{p!}{k!(p-k)!}$. For a prime p, prove that p divides $\binom{p}{k}$, if $k \in \{1, 2, \dots, p-1\}$. Solution.

(b) (10 points) Recall that $(1+x)^p = \sum_{k=0}^p {p \choose k} x^k$. Prove by induction that, for any $x \in \mathbb{Z}_p^*$, we have

$$\overbrace{x \times x \times \cdots \times x}^{p\text{-times}} = x$$

Solution.

(c) (10 points) For $x \in \mathbb{Z}_p^*$, prove that the inverse of x is given by

$$\underbrace{\xrightarrow{(p-2)\text{-times}}}_{x \times x \times \dots \times x}$$

Formally, prove that $x^{p-1} = 1 \mod p$, for any prime p and $x \in \mathbb{Z}_p^*$. Solution.

- 2. Understanding Groups: Part One. In this problem we shall derive some basic results based on the definition of groups as introduced in the lectures. Let (G, \circ) be a group and let e be the identity element of the group.
 - (a) (5 points) Prove that it is impossible that there exists $a, b, c \in G$ such that $a \neq b$ but $a \circ c = b \circ c$. Solution.

3. Understanding Groups: Part Two. Recall that when we defined a group (G, \circ) , we stated that there exists an element e such that for all $x \in G$ we have $x \circ e = x$. Note that e is "applied on x from the right."

Similarly, for every $x \in G$, we are guaranteed that there exists $inv(x) \in G$ such that $x \circ inv(x) = e$. Note that inv(x) is again "applied to x from the right."

In this problem, however, we shall explore the following questions: (a) Is there an "identity from the left?," and (b) Is there an "inverse from the left?"

We shall formalize and prove these results in this question.

(a) (5 points) Prove that $e \circ x = x$, for all $x \in G$. Solution. (b) (8 points) Prove that if there exists an element α ∈ G such that for all x ∈ G we have α ∘ x = x, then α = e.
(Remark: Note that these two steps prove that the "left identity" is identical to the right identity e.)
Solution.

(c) (5 points) Prove that $inv(x) \circ x = e$. Solution. (d) (8 points) Prove that if there exists an element $\alpha \in G$ and $x \in G$ such that $\alpha \circ x = e$, then $\alpha = inv(x)$. (Remark: Note that these two steps prove that the "left inverse of x" is identical to the left inverse inv(x).) Solution.

- 4. Understanding Groups: Part Three. In this part, we will prove a crucial property of inverses in groups they are unique. And finally, using this property, we will prove a result that is crucial to the proof of security of one-time pad over the group (G, \circ) .
 - (a) (5 points) Suppose $a, b \in G$. Let inv(a) and inv(b) be the inverses of a and b, respectively (i.e., $a \circ inv(a) = e$ and $b \circ inv(b) = e$). Prove that inv(a) = inv(b) if and only if a = b. Solution.

(b) (5 points) Suppose $m \in G$ is a message and $c \in G$ is a cipher text. Prove that there exists a unique $\mathsf{sk} \in G$ such that $m \circ \mathsf{sk} = c$. Solution. 5. Calculating Large Powers mod *p*. Recall that we learned repeated squaring algorithm in class.

 $(8 \ {\rm points}).$ Calculate the following using this concept

 $11^{507} \pmod{1237}$

(Remark: 1237 is a prime number). Solution.

- 6. **Practice with Fields.** We shall work over the field $(\mathbb{Z}_7, +, \times)$.
 - (a) (5.6 points) Addition Table. The (i, j)-th entry in the table is i+j. Complete this table. You do not need to fill the black cells because the addition is commutative.

(b) (5.6 points) Multiplication Table. The (i, j)-th entry in the table is $i \times j$. Complete this table.

Table 2: Multiplication Table.

(c) (2.6 points) Additive and Multiplicative Inverses. Write the additive and multiplicative inverses in the table below.

	0	1	2	3	4	5	6
Additive Inverse							
Multiplicative Inverse							

Table 3: Additive and Multiplicative Inverses Table.

(d) (7.2 points) Division Table. The (i, j)-th entry in the table is i/j. Complete this table.

	1	2	3	4	5	6
0						
1						
2						
3						
4						
5						
6						

Table 4: Division Table.

Collaborators :