Homework 2

1. Some properties of $\left(\mathbb{Z}_{p}^{*}, \times\right)$. Recall that \mathbb{Z}_{p}^{*} is the set $\{1, \ldots, p-1\}$ and \times is integer multiplication $\bmod p$, where p is a prime. For example, if $p=5$, then 2×3 is 1 . In this problem we shall prove that $\left(\mathbb{Z}_{p}^{*}, \times\right)$ is a group. The only part missing in the lecture was the proof that every $x \in \mathbb{Z}_{p}^{*}$ has an inverse. We will find the inverse of any element $x \in \mathbb{Z}_{p}^{*}$.
(a) (10 points) Recall $\binom{p}{k}:=\frac{p!}{k!(p-k)!}$. For a prime p, prove that p divides $\binom{p}{k}$, if $k \in\{1,2, \ldots, p-1\}$.
Solution.
(b) (10 points) Recall that $(1+x)^{p}=\sum_{k=0}^{p}\binom{p}{k} x^{k}$. Prove by induction that, for any $x \in \mathbb{Z}_{p}^{*}$, we have

$$
\overbrace{x \times x \times \cdots \times x}^{p \text {-times }}=x
$$

Solution.

(c) (10 points) For $x \in \mathbb{Z}_{p}^{*}$, prove that the inverse of x is given by

$$
\overbrace{x \times x \times \cdots \times x}^{(p-2) \text {-times }}
$$

Formally, prove that $x^{p-1}=1 \bmod p$, for any prime p and $x \in \mathbb{Z}_{p}^{*}$. Solution.
2. Understanding Groups: Part One. In this problem we shall derive some basic results based on the definition of groups as introduced in the lectures. Let (G, \circ) be a group and let e be the identity element of the group.
(a) (5 points) Prove that it is impossible that there exists $a, b, c \in G$ such that $a \neq b$ but $a \circ c=b \circ c$.
Solution.
3. Understanding Groups: Part Two. Recall that when we defined a group (G, \circ), we stated that there exists an element e such that for all $x \in G$ we have $x \circ e=x$. Note that e is "applied on x from the right."
Similarly, for every $x \in G$, we are guaranteed that there exists $\operatorname{inv}(x) \in G$ such that $x \circ \operatorname{inv}(x)=e$. Note that $\operatorname{inv}(x)$ is again "applied to x from the right."
In this problem, however, we shall explore the following questions: (a) Is there an "identity from the left?," and (b) Is there an "inverse from the left?"
We shall formalize and prove these results in this question.
(a) (5 points) Prove that $e \circ x=x$, for all $x \in G$.

Solution.

(b) (8 points) Prove that if there exists an element $\alpha \in G$ such that for all $x \in G$ we have $\alpha \circ x=x$, then $\alpha=e$.
(Remark: Note that these two steps prove that the "left identity" is identical to the right identity e.)
Solution.
(c) (5 points) Prove that $\operatorname{inv}(x) \circ x=e$. Solution.
(d) (8 points) Prove that if there exists an element $\alpha \in G$ and $x \in G$ such that $\alpha \circ x=e$, then $\alpha=\operatorname{inv}(x)$.
(Remark: Note that these two steps prove that the "left inverse of x " is identical to the left inverse $\operatorname{inv}(x)$.)
Solution.
4. Understanding Groups: Part Three. In this part, we will prove a crucial property of inverses in groups - they are unique. And finally, using this property, we will prove a result that is crucial to the proof of security of one-time pad over the group (G, \circ).
(a) (5 points) Suppose $a, b \in G$. Let $\operatorname{inv}(a)$ and $\operatorname{inv}(b)$ be the inverses of a and b, respectively (i.e., $a \circ \operatorname{inv}(a)=e$ and $b \circ \operatorname{inv}(b)=e$). Prove that $\operatorname{inv}(a)=\operatorname{inv}(b)$ if and only if $a=b$.
Solution.
(b) (5 points) Suppose $m \in G$ is a message and $c \in G$ is a cipher text. Prove that there exists a unique $\mathrm{sk} \in G$ such that $m \circ \mathrm{sk}=c$.
Solution.
5. Calculating Large Powers mod p. Recall that we learned repeated squaring algorithm in class.
(8 points). Calculate the following using this concept
$11^{507}(\bmod 1237)$
(Remark: 1237 is a prime number).

Solution.

6. Practice with Fields. We shall work over the field $\left(\mathbb{Z}_{7},+, \times\right)$.
(a) (5.6 points) Addition Table. The (i, j)-th entry in the table is $i+j$. Complete this table. You do not need to fill the black cells because the addition is commutative.

	0	1	2	3	4	5	6
0							
1							
2							
3							
4							
5							
6							

Table 1: Addition Table.
(b) (5.6 points) Multiplication Table. The (i, j)-th entry in the table is $i \times j$. Complete this table.

	0	1	2	3	4	5	6
0							
1							
2							
3							
4							
5							
6							

Table 2: Multiplication Table.
(c) (2.6 points) Additive and Multiplicative Inverses. Write the additive and multiplicative inverses in the table below.

	0	1	2	3	4	5	6
Additive Inverse							
Multiplicative Inverse							

Table 3: Additive and Multiplicative Inverses Table.
(d) (7.2 points) Division Table. The (i, j)-th entry in the table is i / j. Complete this table.

	1	2	3	4	5	6
0						
1						
2						
3						
4						
5						
6						

Table 4: Division Table.

Collaborators :

