Homework 1

1. Tightly Estimating Summations. Use integration to tightly estimate the following expressions.
(a) (15 points) $S_{n}=\sum_{i=1}^{n} \frac{1}{i}$, Solution.
(b) (15 points) $S_{n}=\sum_{i=1}^{n} \ln i$, Solution.
(c) (15 points) $S_{n}=n$!
(Remark: Recall that $n!=\prod_{i=1}^{n} i$)
Solution.
2. Trapezoid Rule. In the lecture, we saw that if f is a concave upwards function then the following is true.

$$
\frac{f(x-1)+f(x)}{2} \geqslant \int_{x-1}^{x} f(t) \mathrm{d} t
$$

(a) (20 points) Prove that, for a concave upwards function f, we have

$$
f(1)+f(2)+\cdots+f(n) \geqslant \frac{f(1)+f(n)}{2}+\int_{1}^{n} f(t) \mathrm{d} t
$$

Solution.
(b) (10 points) Use this result to lower-bound the sum

$$
S_{n}=\sum_{i=0}^{n-1} a^{i},
$$

where a is a positive real number.
Solution.
3. Understanding Joint Distribution. Recall that in the lectures we considered the joint distribution (\mathbb{T}, \mathbb{B}), where \mathbb{T} represents the time I wake up in the morning, and \mathbb{B} represents whether I have breakfast or not. The following table summarizes the joint probability distribution.

t	b	$\mathbb{P}[\mathbb{T}=t, \mathbb{B}=b]$
4	T	0.03
4	F	0
5	T	0.02
5	F	0
6	T	0.30
6	F	0.05
7	T	0.20
7	F	0.10
8	T	0.10
8	F	0.08
9	T	0.05
9	F	0.05
10	T	0
10	F	0.02

Calculate the following probabilities.
(a) (10 points) $\mathbb{P}[\mathbb{T} \leqslant 7, \mathbb{B}=T]$,

Solution.
(b) (10 points) $\mathbb{P}[\mathbb{T} \leqslant 7]$, and Solution.
(c) (10 points) $\mathbb{P}[\mathbb{B}=\mathrm{T} \mid \mathbb{T} \leqslant 7]$.

Solution.

