Homework 1

- 1. **Tightly Estimating Summations.** Use integration to tightly estimate the following expressions.
 - (a) (15 points) $S_n = \sum_{i=1}^n \frac{1}{i}$, Solution.

(b) (15 points) $S_n = \sum_{i=1}^n \ln i$, Solution. (c) (15 points) $S_n = n!$ (Remark: Recall that $n! = \prod_{i=1}^n i$) Solution. 2. Trapezoid Rule. In the lecture, we saw that if f is a concave upwards function then the following is true.

$$\frac{f(x-1) + f(x)}{2} \ge \int_{x-1}^x f(t) \,\mathrm{d}t$$

(a) (20 points) Prove that, for a concave upwards function f, we have

$$f(1) + f(2) + \dots + f(n) \ge \frac{f(1) + f(n)}{2} + \int_1^n f(t) dt$$

Solution.

(b) (10 points) Use this result to lower-bound the sum

$$S_n = \sum_{i=0}^{n-1} a^i,$$

where a is a positive real number. Solution.

Understanding Joint Distribution. Recall that in the lectures we considered the joint distribution (T, B), where T represents the time I wake up in the morning, and B represents whether I have breakfast or not. The following table summarizes the joint probability distribution.

t	b	$\mathbb{P}\left[\mathbb{T}=t,\mathbb{B}=b\right]$
4	Т	0.03
4	F	0
5	Т	0.02
5	F	0
6	Т	0.30
6	F	0.05
7	Т	0.20
7	F	0.10
8	Т	0.10
8	F	0.08
9	Т	0.05
9	F	0.05
10	Т	0
10	F	0.02

Calculate the following probabilities.

(a) (10 points) $\mathbb{P}[\mathbb{T} \leq 7, \mathbb{B} = T]$, Solution. (b) (10 points) $\mathbb{P}[\mathbb{T} \leq 7]$, and Solution.

(c) (10 points) $\mathbb{P}[\mathbb{B} = \mathsf{T} \mid \mathbb{T} \leq 7]$. Solution.