
Lecture 19: Public-key Cryptography
(Diffie-Hellman Key Exchange & ElGamal

Encryption)

Public-key Cryptography

Recall

In private-key cryptography the secret-key sk is always
established ahead of time
The secrecy of the private-key cryptography relies on the fact
that the adversary does not have access to the secret key sk
For example, consider a private-key encryption scheme

1 The Alice and Bob generate sk $← Gen() ahead of time
2 Later, when Alice wants to encrypt and send a message to

Bob, she computes the cipher-text c = Encsk(m)
3 The eavesdropping adversary see c but gains no additional

information about the message m
4 Bob can decrypt the message m̃ = Decsk(c)
5 Note that the knowledge of sk distinguishes Bob from the

eavesdropping adversary

Public-key Cryptography

Perspective

If |sk| > |m|, then we can construct private-key encryption
schemes (like, one-time pad) that is secure even against
adversaries with unbounded computational power
If |sk| = O(|m|ε), where ε ∈ (0, 1) is a constant, then we can
construction private-key encryption schemes using
pseudorandom generators (PRGs)
What if, |sk| = 0? That is, what if Alice and Bob never met?
How is “Bob” any different from an “adversary”?

Public-key Cryptography

In this Lecture

We shall introduce the Decisional Diffie-Hellmann (DDH)
Assumption and the Diffie-Hellman key-exchange protocol,
We shall introduce the El Gamal (public-key) Encryption
Scheme, and
Finally, abstract out the principal design principles learned.

Public-key Cryptography

Decisional Diffie-Hellman (DDH) Computational Hardness
Assumption I

Let (G , ◦) be a group of size N that is generated by g . We
represent it as (G , ◦) = 〈g〉.

We shall represent g0 = e, the identity of the group (G , ◦)

We shall use the short-hand to represent g i =

i-times︷ ︸︸ ︷
g ◦ g ◦· · · ◦ g

Then, we have the set G =
{
g0, g1, g2, . . . , gN−1

}
We have already seen how to compute g a efficiently, for
a ∈ {0, 1, . . . ,N − 1} using repeated squaring
We can easily compute the inv(g a) (Think)

Note that we are not providing the entire set G written down
as a set. This has N entries and is too long (for intuition,
think of N as 1024-bit number, so N is roughly 21024). We
only provide a succinct way to generate the group G by
providing the generator g . Given i , we can efficiently generate
the element g i ∈ G

Public-key Cryptography

Decisional Diffie-Hellman (DDH) Computational Hardness
Assumption II

Definition (Decisional Diffie-Hellman Assumption)

There exists groups (G , ◦) = 〈g〉 such that no
computationally-bounded adversary can efficiently distinguish the
following two distributions

The distribution of (A = ga,B = gb,C = gab), where
a, b

$←{0, 1, . . . ,N − 1}, and
The distribution of (A = ga,B = gb,R = g r), where
a, b, r

$←{0, 1, . . . ,N − 1}

Public-key Cryptography

Decisional Diffie-Hellman (DDH) Computational Hardness
Assumption III

Remarks:

Note that DDH Assumption is a “belief” and not a “fact.” If it
is proven that such groups exist where DDH assumption holds,
then this proof will also imply that P 6= NP

We emphasize that the DDH assumption need not hold for an
arbitrary group. There are specially constructed groups where
DDH assumption is believed to hold

For a fixed value of A = ga and B = gb, note that there is a
unique value of C = gab

The definition, intuitively, states that “Even given A = ga and
B = gb, the adversary cannot (efficiently) distinguish C = gab

from a random R = g r .” Alternatively, “even given A = ga

and B = gb, the element C = gab looks random to a
computationally bounded adversary.”

Public-key Cryptography

Decisional Diffie-Hellman (DDH) Computational Hardness
Assumption IV

Note that it is implicit in the DDH assumption that given
A = ga and g , it is computationally inefficient to compute
a = logg A, i.e., computing the discrete logarithm is hard in
the group (Think: Will DDH hold in a group if computing the
discrete logarithm is easy?)

Note that if a = 0 (i.e., A = e) then it is clear that
C = gab = e as well. Then the adversary can distinguish
between gab and g c (random c). However, it is unlikely that
a = 0 (or, b = 0) will be chosen. It is possible that there are
particular values of a and b when an adversary can distinguish
C = gab from R = g r , but the DDH assumption says that
those bad values of a and b are rare, and, consequently,
unlikely to be chosen. Thus, it is extremely crucial that a, b
are picked at random from the set {0, 1, . . . ,N − 1}

Public-key Cryptography

Example: Group where DDH Assumption does NOT hold I

We shall present an example group where DDH Assumption is
clearly false

Let p be a prime and consider the group (Z∗p,×), where × is
integer multiplication mod p

Let g be a generator for this group. That is, we have
{g0, g , . . . , gp−2} is identical to the set {1, 2, . . . , p − 1}
Given X = g x , for x ∈ {0, 1, . . . , p − 2}, we can efficiently
determine whether x is even or not! (Note: We shall not
compute x . We shall only determine whether x is even or not.)

Here is the algorithm. The case of p = 2 is easy. Suppose
p > 2.
Note that if x = 2k (that is, x is even), then
X (p−1)/2 =

(
g2k
)(p−1)/2

=
(
gp−1

)k
= 1k = 1.

Public-key Cryptography

Example: Group where DDH Assumption does NOT hold II

Note that if x = 2k + 1 (that is, x is odd), then X (p−1)/2 =(
g2k+1

)(p−1)/2
=
(
gp−1

)k
g (p−1)/2 = 1kg (p−1)/2 = g (p−1)/2.

Note that g is a generator of Z∗
p, so g (p−1)/2 6= 1 (because the

smallest power t > 0 for which g t = 1 is t = p − 1). So, we
conclude X (p−1)/2 6= 1.
So, given X ∈ Z∗

p, we can (efficiently compute and) check
X (p−1)/2 = 1 or not. This test identifies whether x is even or
not, where X = g x

For brevity, we shall say that X is an even power, if X = g x

and x is even. Similarly, we shall say that X is an odd power,
if X = g x and x is odd.

So, given A and B we can determine if A or B is an even
power. If A or B is an even power then C is an even power as
well! However, the element R shall be an even power only with
probability 1/2.

Public-key Cryptography

Example: Group where DDH Assumption does NOT hold III

We can use this observation to efficiently distinguish samples
from the distribution (A,B,C) from (A,B,R). Suppose we
are given elements (α, β, γ). We perform the following test(

Is (α or β) an even power
)
and Is γ an even power

Suppose (α, β, γ) ∼ (ga, gb, gab), where
a, b

$←{0, 1, . . . ,N − 1}. Note that the probability that α or β
is an even power is 3/4. Conditioned on α or β being an even
power, the probability that γ is an even power is 1. So, the
probability that this test returns true is (3/4) · 1 = 3/4.

Suppose (α, β, γ) ∼ (ga, gb, g r), where
a, b, r

$←{0, 1, . . . ,N − 1}. Note that the probability that α or
β is an even power is 3/4. Conditioned on α or β being an
even power, the probability that γ is an even power is 1/2. So,
the probability that this test returns true is (3/4) · (1/2) = 3/8.

Public-key Cryptography

Example: Group where DDH Assumption does NOT hold IV

So, this test distinguishes the distribution (A,B,C) from
(A,B,R).

Public-key Cryptography

Example: Group where DDH is believed to hold

Let p and q be primes such that p = 2q + 1
Let g be a generator of the group (Z∗p,×), where × is integer
multiplication mod p

Let G ′ be the set of all even powers in G . That is, we have
G ′ = {g0, g2, . . . , gp−3}.
Now, for large primes p the DDH assumption is believed to
hold in the group (G ′,×), where × is integer multiplication
mod p

Public-key Cryptography

DDH Key-Agreement Protocol I

Alice Bob

b
$←{0, 1, . . . ,N − 1}

B = gb

B

a
$←{0, 1, . . . ,N − 1}

A = ga

A

Compute sk = Ba Compute sk = Ab

Public-key Cryptography

DDH Key-Agreement Protocol II

Note that both parties can computed the key gab

An adversary sees A = ga and B = gb. From this adversary’s
perspective, the key gab is indistinguishable from the random
element g r . So, the key sk = gab is hidden from the adversary

Public-key Cryptography

DDH Key-Agreement Protocol III

Remarks.
Why is this algorithm efficient? Alice can compute A from the
generator g and a using the “repeated squaring technique.”
Similarly, Alice can also compute the key sk = Ba by repeated
squaring technique.

What advantage does the parties have over the adversary?
Alice knows a, therefore she can compute A and Ba efficiently.
Bob knows b, therefore he can compute B and Ab efficiently.
Adversary, however, only sees A and B , and DDH states that
it is computationally infeasible to distinguish gab from a
random group element g r . Note that if the adversary can
compute the discrete log logg A, then she can easily compute
B(logg A), the key.

Public-key Cryptography

How to use the Secret Key

At the end of the Diffie-Hellman key-exchange protocol, Alice
and Bob has established a secret key sk that is hidden from
the adversary
Note that Alice and Bob did not have to meet earlier to
establish this secret key (contrast this with the private-key
encryption scenario, where Alice and Bob have to meet first to
establish a secret-key sk)
Now, we can use the key sk generated by the Diffie-Hellman
key-exchange protocol and run any private-key cryptographic
primitive using the secret key sk

The benefit is that Alice and Bob did not have to meet earlier
The downside is that the scheme is secure only against
computationally bounded adversaries

Public-key Cryptography

ElGamal Public-key Encryption I

Summary of this Scheme. Run the one-time pad private-key
encryption over the group (G , ◦) using the key generate by the
Diffie-Hellman key-exchange protocol.

Public-key Cryptography

ElGamal Public-key Encryption II

Recall the Diffie-Hellman key-exchange protocol.

Alice Bob

b
$←{0, 1, . . . ,N − 1}

B = gb

B

a
$←{0, 1, . . . ,N − 1}

A = ga

A

Compute sk = Ba Compute sk = Ab

Public-key Cryptography

ElGamal Public-key Encryption III

To encrypt a message m ∈ G , Alice encrypts as follows
c = m ◦ sk = m ◦ gab

To decrypt a cipher-text c ∈ G , Bob decrypts as follows
m̃ = c ◦ inv(sk) = c ◦ g−ab

Public-key Cryptography

ElGamal Public-key Encryption IV

We summarize this protocol (ElGamal Encryption) below.

Alice Bob

b
$←{0, 1, . . . ,N − 1}

B = gb

B

a
$←{0, 1, . . . ,N − 1}

A = ga

Compute c = m ◦ Ba

(A, c)

Public-key Cryptography

ElGamal Public-key Encryption V

The element B sent by Bob is Bob’s public-key. It is
announced to the world by Bob only once.

Whoever wants to send an encrypted message to Bob, uses
Bob’s public-key B

The pair of elements (A, c) sent by Alice is the cipher-text

Bob can easily decrypt by computing m̃ = c ◦ inv(Ab)

The algorithm followed by Alice is her encryption algorithm.
To encrypt a new message m′, Alice will choose a fresh
random a′ and compute A′ = ga′ and c ′ = m′ ◦ Ba′

Public-key Cryptography

