
Lecture 17: Message Authentication Codes

MAC

Outline

In today’s lecture we will learn about Message Authentication
Codes (MACs)
We shall define security notions that we expect from such a
primitive
Finally, we shall construct MACs using pseudorandom functions

MAC

Introduction: MAC

A Message Authentication Scheme (MAC) is a private-key
version of signatures involving two parties, the Signer and the
Verifier

Private-key: This means that the signer and the verifier met
yesterday and established a secret-key
Signature: This means that the verifier can verify that the
signer endorses a particular message, and an eavesdropper
cannot forge such endorsements

Defined by three algorithms (Gen, Sign,Ver)
Secret-key Generation: sk = Gen()
Signing Messages: Compute the tag τ = Signsk(m)
The Signer sends (m, τ) to the verifier
Verifying Message-tag pairs: z = Versk(m̃, τ̃) ∈ {0, 1}. Output
z = 1 indicates that the message-tag pair is accepted, while
output z = 0 indicates that the message-tag pair is not
accepted.

MAC

Pictorial Summary

Yesterday

Today

Signer Verifier

sk = Gen()

τ = Signsk(m)

Send (m, τ)

z = Versk(m, τ)

MAC

Comments

No Secrecy: Previously, we saw that primitives like encryption
and secret sharing require hiding some information from the
adversary. In MACs, the message m is in the clear! We want
to ensure that an adversary should not be able to generate
tags that verify for new messages.
Secrecy of sk: The secrecy of sk is paramount. If the
secret-key sk is obtained by an adversary, then the adversary
can use the signing algorithm to sign arbitrary messages!

MAC

Correctness

Let the message space beM
Intuition: We want to ensure that the tag for any message
m ∈M that is generated by the honest signer should always
verify
Mathematically, we can write this as: For every message
m ∈M, we have

P
[
z = 1 : sk = Gen(), τ = Signsk(m), z = Versk(m, τ)

]
= 1

English Translation: The probability that z = 1 is 1, where the
secret-key sk = Gen(), the tag τ = Signsk(m), and the output
z = Versk(m, τ).
Note that this guarantee is for every message m. We do not
want the signing algorithm to create verifiable tags only for a
subset of messages
The probability is over the choice of sk output by the
generation algorithm Gen()

MAC

Message Integrity

We want to ensure that an adversary cannot tamper the
message m into a different message m′ such that the original
tag τ is also a valid tag for the adversarial message m′

Let T be the range of the signing algorithm (i.e., the set of all
possible tags)
Message Integrity can be ensured if the following property
holds. For all distinct m,m′ ∈M, we have

P
[
Signsk(m

′) = τ |Signsk(m) = τ
]
6

1
|T |

Note that we cannot insist on the above probability to be 0
when the set of all possible tags is smaller than the set of all
messages

MAC

Unforgeability

We want to ensure that an adversary cannot forge the tag of a
new message m′ by observing one message-tag pair (m, τ)
Unforgeability can be ensured if the following property holds.
For all distinct m,m′ ∈M, we have

P
[
Signsk(m

′) = τ ′|Signsk(m) = τ
]
=

1
|T |

Again, note that we cannot insist on the above probability to
be 0 when the set of all possible tags is smaller than the set of
all messages

MAC

Food for thought

Suppose we want to design a MAC that remains unforgeable
even when the adversary has seen (k − 1) message-tag pairs.
What probability guarantee will be needed?

MAC

Motivation of the Construction I

In the following slides, we will construct a MAC using Random
Functions

Understand its properties and its shortcomings

Then, we shall replace the random function using a
pseudorandom function family

MAC

Motivation of the Construction II

Goal.

Suppose we have n-bit messages, i.e., the message space is
{0, 1}n

We will generate n/100-bit tags, i.e., the space of tags is
{0, 1}n/100

MAC

Motivation of the Construction III

Scheme.
Secret-key Generation Algorithm.

Let F be a random function from the domain {0, 1}n to the
range {0, 1}n/100

Let the secret key sk be the function table of F
Both the sender and the verifier will share the secret-key
sk = F

Tagging Algorithm.
The tag τ{0, 1}n/100 for a message m{0, 1}n using the secret
key sk = F is computed by: τ = F (m)
To endorse the message m, the sender will send the pair (m, τ)

Verification Algorithm.
The verifier will receive a pair (m̃, τ̃)
The verifier will check whether τ̃ = F (m̃), where the secret-key
sk = F

MAC

Motivation of the Construction IV

Analysis of Adversarial Attack.
Suppose the adversary sees a pair (m, τ)
The adversary does not know the secret-key sk = F , but it
knows that F (m) = τ

Now, the adversary has to generate a different message
m′ ∈ {0, 1}n and a tag τ ′ such that the pair (m′, τ ′) verifies
The adversarial pair (m′, τ ′) will verify if an only if F (m′) = τ ′

Let us look at this probability

P
[
F (m′) = τ ′|F (m) = τ

]
Let us parse this mathematical expression. The adversary
already knows the fact that “F (m) = τ .” So, we are
conditioning on that fact in the probability expression. And,
conditioned on this fact, we are interested in finding the
probability that F (m′) = τ ′.

MAC

Motivation of the Construction V

First observation. Given the fact that F (m) = τ (i.e.,
evaluation of a function at one input) the evaluation of F (m′)
is uniformly random over the range. Because, for a random
function, given the evaluation of a function at one input, the
evaluation of the function F at any other input is uniformly
random over the range.
So, conditioned on the knowledge of the adversary that
F (m) = τ , the probability that F (m′) = τ ′, where m′ 6= m, is
“1 divided by the size of the range.” In our case, that is

1
2n/100

Therefore, we conclude

P
[
F (m′) = τ ′|F (m) = τ

]
=

1
2n/100

MAC

Motivation of the Construction VI

Conclusion.

It is highly unlikely that an adversary will be able to forge a
tag given one (m, τ) pair

MAC

Motivation of the Construction VII

Extension.

In fact, this scheme has an even more interesting property

Suppose the sender has sent several message-tag pairs. That
is, the sender has sent (m1, τ1), (m2, τ2), . . . , (mt , τt). Note
that they satisfy the following relation τ1 = F (m1),
τ2 = F (m2), . . . , τt = F (mt).

The adversary has seen all these message-tag pairs. Can the
adversary forge a new message-tag pair? Let us see.

MAC

Motivation of the Construction VIII

Analysis of the Probability of Forging in the Extension.

Let us write down what the adversary has seen. The adversary
knows that

F (m1) = τ1,F (m2) = τ2, . . . ,F (mt) = τt

Conditioned on this information, we are interested in the
probability that F (m′) = τ ′, where m′ is different from all the
messages m1,m2, . . . ,mt

So, we are interested in the probability

P
[
F (m′) = τ ′|F (m1) = τ1,F (m2) = τ2, . . . ,F (mt) = τt

]

MAC

Motivation of the Construction IX

Main Observation. Even if we know the evaluation of the
function F at inputs m1, m2, . . . , mt , the evaluation of F at a
new input m′ is uniformly random over the range. So, we can
conclude that the probability of forging is

P
[
F (m′) = τ ′|F (m1) = τ1,F (m2) = τ2, . . . ,F (mt) = τt

]
=

1
2n/100

MAC

Motivation of the Construction X

Conclusion.

The MAC using random function to generate tags is secure
even when the adversary sees t message-tag pairs (for any
value of t less than the size of the range, i.e., t < 2n)

MAC

Features of MAC using Random Function I

Positive Features.

Even if the adversary has unbounded computational power, the
probability arguments bounding its probability to forge still
holds

The scheme is secure for any t < 2n/100

MAC

Features of MAC using Random Function II

Primary Shortcoming.

Let us compute the size of the function-table for the function
F . Recall that F is from the domain {0, 1}n to the range

{0, 1}n/100. So, there are a total of
(
2n/100

)2n
= 2(n/100)2n

different functions. This implies that we need (n/100)2n

(exponential in n) bits to represent this function! Even for
n = 512, this number is larger than the number of atoms
(which is < 2273) in the entire universe.

MAC

What Next?

To fix the shortcoming mentioned above, we set forth the following
goals for ourselves

We will construct functions that use smaller key, i.e., length is
polynomial in n

However, our security will hold only for computationally bounded
adversaries (instead of adversaries with unbounded computational
power) In the previous lecture we have constructed pseudorandom
functions, which shall serve this exact purpose!

MAC

MAC using Pseudorandom Functions I

Scheme.

Secret-key Generation. Sample sk uniformly at random from
{0, 1}n/100 and provide sk to both the sender and the verifier

Tagging a message m ∈ {0, 1}n. The sender computes tag
τ = Fsk(m) (evaluate using the GGM construction)

Verifying a message-tag pair (m̃, τ̃). Check whether τ̃ is same
as Fsk(m̃) or not

MAC

MAC using Pseudorandom Functions II

Security

An adversary cannot forge if it sees t message-tag pairs, where
t = poly(n) and the adversary is computationally bounded

MAC

Subtlety I

The scheme mentioned above is secure ONLY for messages
in {0, 1}n and NOT {0, 1}∗
What does it mean?

The set {0, 1}n represents n-bit messages, and {0, 1}∗
represents arbitrary-length messages. This scheme is secure
only when an adversary see message-tag pairs for messages
m1,m2, . . . ,mt such that all of them have identical length n.
Moreover, the adversary has to forge by producing (m′, τ ′) pair
such that the length of the message m′ is exactly n.

The scheme is not secure if the adversary can produce a
message of a different length. The attack is explained in the
next slide

MAC

Subtlety II

Adversarial strategy to forge a message-tag pair of different
length.

Suppose the adversary has seen a message-tag pair (m, τ)
such that τ = Fsk(m)

The adversary creates m′ = m0 (i.e., the message m
concatenated at the end with 0). The adversary computes τ ′

as the first half of G (τ).

Verify that Fsk(m
′) = τ ′

In fact, the adversary can successfully tag any m′ such that m
is the prefix of m′

MAC

Lesson Learned (Very Important)

The sender and the verifier should establish one secret-key sk
for EACH length of the message that they want to sign. For
example

They establish a secret-key sk ∈ {0, 1}k for 1024-bit messages
and use Fsk(m) as the tag for 1024-bit messages m
If they want to tag 2048-bit messages, then they establish a
new secret-key sk′ ∈ {0, 1}k and use Fsk′(m) as the tag for
2048-bit messages m
The verifier should only check the validity of the tags
corresponding to 2048-bit messages using the secret-key
associated with message-length 2048 (in our case, it is the
secret-key sk′)

MAC

Food for thought

Suppose we want to construct a MAC so that if t-parties
among a set of n-parties decide to endorse a message m, then
they can add a tag that the verifier can verify. How to
construct such a scheme?

MAC

