
Lecture 16: Pseudorandom Functions

PRF

Random Functions

Let Fm,n be the set of all function from the domain {0, 1}m to
the range {0, 1}n

Each function f ∈ Fm,n can be uniquely represented by a list
of length {0, 1}m where the i-th entry in the list is the entry
f (i), for i ∈ {0, 1}m

So, each entry in the list has 2n options. And, there are a total
of 2m such entries. So, the total number of distinct functions
from the set {0, 1}m → {0, 1}n is

2m-times︷ ︸︸ ︷
(2n)×· · · × (2n) = 2n2

m

So, we can conclude that each function f ∈ Fm,n can be
described using n2m bits

PRF

Crucial Property of Random Functions

Intuition.
Suppose we pick a random f

$←Fm,n

Then the evaluation of f at any input x1 is uniformly random
over {0, 1}n.
Further, the evaluation of f at any other input x2 given f (x1)
is again uniformly random over {0, 1}n.
In particular, the evaluation of f at an input xt given
f (x1), . . . , f (xt−1) is uniformly random
Intuitively, the evaluation of a random f is completely
unpredictable at any new input

Formally. For any distinct inputs x1, . . . , xt ∈ {0, 1}m and any
outputs y1, . . . , yt ∈ {0, 1}n, the following holds

P
f

$←Fm,n

[
f (xt) = yt |f (x1) = y1, . . . , f (xt−1) = yt−1

]
=

1
2n

PRF

Secret-key Encryption using Random Functions

Consider the following private-key encryption scheme

1 Gen(): Return sk = f
$←Fm,n

2 Encf (m): Pick a random r
$←{0, 1}m. Return (m ⊕ f (r), r),

where m ∈ {0, 1}n.
3 Decf (c̃ , r̃): Return c̃ ⊕ f (r̃).

Features. Suppose the messages m1, . . . ,mu are encrypted as the
cipher-texts (c1, r1), . . . , (cu, ru).

As long as the r1, . . . , ru are all distinct, each one-time pad
f (r1), . . . , f (ru) are uniform and independent of others. So, this
encryption scheme is perfectly secure!

The probability that any two of the randomness in r1, . . . , ru are not
distinct is very small (We shall prove this later as “Birthday Paradox”)

This scheme is a “state-less” encryption scheme. Alice and Bob do not
need to remember any private state (except the secret-key sk)!

PRF

Bottleneck of using Random Functions

The secret-key sk needs n2m bits to represent it, which is
exponentially large.
We shall replace “random functions” using “pseudorandom
functions” to construct an encryption scheme that has short
keys and remains secure against computationally bounded
adversaries!

PRF

Pseudo-random Functions (PRF)

Let Gm,n,k = {g1, g2, . . . , g2k} be a set of functions such that
each gi : {0, 1}m → {0, 1}n

This set of functions Gm,n,k is called a pseudo-random function
if the following holds.
Suppose we pick g

$←Gm,n,k . Let x1, . . . , xt ∈ {0, 1}m be
distinct inputs. Given (x1, g(x1)), . . . , (xt−1, g(xt−1)) for any
computationally bounded party the value g(xt) appears to be
uniformly random over {0, 1}n

PRF

Secret-key Encryption using Pseudo-Random Functions

Before we construct a PRF, let us consider the following secret-key
encryption scheme.

1 Gen(): Return sk = id $←{1, . . . , 2k}
2 Encid(m): Pick a random r

$←{0, 1}m. Return
(m ⊕ gid(r), r), where m ∈ {0, 1}n.

3 Decid(c̃ , r̃): Return c̃ ⊕ gid(r̃).

Features. Suppose the messages m1, . . . ,mu are encrypted as the
cipher-texts (c1, r1), . . . , (cu, ru).

As long as the r1, . . . , ru are all distinct, each one-time pad
gid(r1), . . . , gid(ru) appear uniform and independent of others to
computationally bounded adversaries. So, this encryption scheme is
secure against computationally bounded adversaries!

The probability that any two of the randomness in r1, . . . , ru are not
distinct is very small (We shall prove this later as “Birthday Paradox”)

This scheme is a “state-less” encryption scheme. Alice and Bob do not
need to remember any private state (except the secret-key sk)!

PRF

Construction of PRF I

We shall consider the construction of
Goldreich-Goldwasser-Micali (GGM) construction.

Let G : {0, 1}k → {0, 1}2k be a PRG. We define
G (x) = (G0(x),G1(x)), where G0,G1 : {0, 1}k → {0, 1}k

Let G ′ : {0, 1}k → {0, 1}n be a PRG

We define gid(x1x2 . . . xm) as follows

G ′
(
Gxm(· · ·Gx2(Gx1(id))· · ·)

)

PRF

Construction of PRF II

Consider the execution for x = x1x2x3 = 010. Output z is computed as follows.

sk

G

Go Left because x1 = 0

G

Go Right because x2 = 1

G

Go Left because x3 = 0

G ′

z

PRF

Pseudocodes I

We give the pseudocode of algorithms to construct PRG and PRF
using a OWP f : {0, 1}k/2 → {0, 1}k/2

Suppose f : {0, 1}k/2 → {0, 1}k/2 is a OWP
We provide the pseudocode of a PRG G : {0, 1}k → {0, 1}t ,
for any integer t, using the one-bit extension PRG
construction of Goldreich-Levin hardcore predicate
construction. Given input s ∈ {0, 1}k , it outputs G (s).
G (k , t, s):

1 Interpret s = (r , x), where r , x ∈ {0, 1}k/2

2 Initialize bits = [] (i.e., an empty list)

3 Initialize z = x

4 For i = 1 to t:

1 bits.append(〈r , z〉), here 〈·, ·〉 is the inner-product
2 z = f (z)

5 Return bits
PRF

Pseudocodes II

We provide the pseudocode of the PRF
gid : {0, 1}m → {0, 1}n, where id ∈ {0, 1}k , using the GGM
construction. Given input x ∈ {0, 1}m, it outputs gid(x).

g(m, n, k , id, x):
1 Interpret x = x1x2 . . . xm, where x1, . . . , xm ∈ {0, 1}
2 Initialize inp = id

3 For i = 1 to m:

1 Let y = G(k, 2k, inp)
2 If xi = 0, then inp is the first k bits of y . Otherwise (if

xi = 1), inp is the last k bits of y .

4 Return G (k , n, inp)

PRF

Birthday Bound I

Suppose we have a set S = {s1, s2, . . . , sn}
Suppose we sample an element x1 uniformly at random from
the set S .

Replace this element back in the set S and sample an element
x2 uniformly at random from the set S

This process of sampling is referred to as “sampling with
replacement”

Suppose we sampled elements {x1, x2, . . . , xk}
We are interested in understanding how likely is it that there
are two elements xi = xj , such that i 6= j . Intuitively, we are
interested in finding the probability that k elements when
sampled uniformly at random from S (with replacement)
encounters a collision

PRF

Birthday Bound II

Why are we studying this probability? Recall that earlier in
this lecture we noted that if all the random r ’s chosen in the
encryption algorithm are distinct, then the encryption scheme
remains secure against computationally bounded
eavesdroppers. So, the probability that we are computing shall
help us determine the length of the randomness so that it is
highly unlikely to encounter collisions.

Okay, let us start by studying the complementary event. We
are interested in the event that all the samples {x1, x2, . . . , xk}
are distinct

Note that the probability that x1 is distinct from all previous
samples is 1

Conditioned on the fact that {x1} is distinct, the probability
that x2 is distinct from all previous samples is

(
1− 1

n

)
PRF

Birthday Bound III

Conditioned on the fact that {x1, x2} are distinct, the
probability that x3 is distinct from all previous samples is(
1− 2

n

)
Extrapolating these observations, we can conclude the
following. Conditioned on the fact that {x1, x2, . . . , xi−1} are
distinct, the probability that xi is distinct from all previous
samples is

(
1− i−1

n

)
So, using the chain rule, we can conclude the following. The
probability that {x1, . . . , xk} are all distinct is the following
product.

1 ·
(
1− 1

n

)
·
(
1− 2

n

)
· · ·
(
1− k − 1

n

)

PRF

Birthday Bound IV

This expression is the product that we saw in the midterm. We
shall use the fact that exp(−x) ≈ 1− x when 0 6 x � 1. This
fact can be made more mathematically precise using Taylor’s
Remainder Theorem, which is beyond the scope of this course.
So, in this course, we shall proceed by using exp(−x) ≈ 1− x

So, let us begin the manipulation of the expression above

1 ·
(
1− 1

n

)(
1− 2

n

)
· · ·
(
1− k − 1

n

)
≈ exp(−0) exp(−1/n) exp(−2/n)· · · exp(−(k − 1)/n)

= exp

(
−0− 1

n
− 2

n
−· · · − k − 1

n

)
=exp

(
−k(k − 1)

2n

)
≈ exp(−k2/2n) = exp(−k2/2|S |)

PRF

Birthday Bound V

Suppose we set k =
√
|S |/100. Substituting this value of k in

the formula above, note that the probability that all the
samples are distinct is ≈ exp(−1/20000), which is very close
to 1!

Suppose we set k = 100
√
|S |. Substituting this value of k in

the formula above, note that the probability that all the
sample are distinct is ≈ exp(−5000), which is very close to 0!

Intuitively, it says that if k 6
√
|S |/100, all samples are very

likely to be distinct. On the other hand, if k > 100
√
|S |, it is

highly unlikely that all samples are distinct (that is, there
exists two identical samples; or collision occurs)

PRF

A Numerical Example of the Birthday Bound

Suppose we are picking uniform random strings from the set
{0, 1}n

Our objective is that 21000 random samples have a collision
with probability at most 2−80

What value of n should we use?

So, we have S = {0, 1}n. The size of the set S is 2n.
The probability that k samples are all distinct is
exp(−k2/2|S |) = exp(−k2/2n+1). The problem states that we
shall pick k = 21000 samples.
Our objective is to have collision probability 6 2−80. That is,
the probability of all samples being distinct is > 1− 2−80.
So, we have the following equation and we need to solve for n

exp(−k2/2n+1) = exp(−22000/2n+1) > 1−2−80 ≈ exp(−2−80)

Solving this equation is left as an exercise
PRF

