Lecture 11: Generating Large Primes
Let us begin by constructing an algorithm that outputs n-bit prime numbers **IF** we can efficiently test whether a number is a prime or not.

We shall assume that `Is_Prime(X)` returns true if and only if X is prime number; otherwise, it returns false.

Idea of the Algorithm. We will pick a random number X in the range $[2^{n-1}, 2^n - 1]$ and test whether X is a prime number or not. If X is prime number then we are done. Otherwise, we repeat.

Consider the code for this algorithm

```python
Generate_Prime(n):
    While (true):
        $X \leftarrow [2^{n-1}, 2^n - 1]$
        If Is_Prime($X$) then return $X$
```
Generating n-bit Primes

- To understand the running time of this algorithm, we will have to understand the distribution of the primes. In particular, how densely are prime numbers distributed over natural numbers. Towards this, we shall use the following theorem without proof.

Theorem (Prime Number Theorem)

The total number of prime $< N$ is (roughly) $P_N = N / \log N$.

- So, the number of primes in the range $[2^{n-1}, 2^n - 1]$ is $P_{2^n} - P_{2^{n-1}}$. Let us calculate this expression

$$P_{2^n} - P_{2^{n-1}} = \frac{2^n}{n} - \frac{2^{n-1}}{n-1} = 2^{n-1} \left(\frac{2}{n} - \frac{1}{n-1} \right) \approx 2^{n-1} \cdot \frac{1}{n}$$
Note that the total number of integers in the range $[2^{n-1}, 2^n - 1]$ is exactly 2^{n-1}

First Conclusion. As we have seen above, among these 2^{n-1}, we have (roughly) $2^{n-1} \frac{1}{n}$ prime numbers. If we pick a number at random from the range $[2^{n-1}, 2^n - 1]$, then the probability that the number is a prime is

$$\frac{2^{n-1} \cdot \frac{1}{n}}{2^{n-1}} = \frac{1}{n}$$

Intuitively, if we want to generate an $n = 1000$ bit prime number, then the probability that random number in the range $[2^{99}, 2^{100} - 1]$ is a prime number is (roughly) $\frac{1}{n} = \frac{1}{1000}$.

Failing to generate a prime in t attempts. Note that the probability that we fail to generate a prime number in one iteration of the loop is given by

\[
\left(1 - \frac{1}{n}\right)
\]

So, the probability of failing to generate a prime number in two iterations of the loop is given by

\[
\left(1 - \frac{1}{n}\right)^2
\]

Similarly, the probability of failing to generate a prime number in t iterations of the loop is given by

\[
\left(1 - \frac{1}{n}\right)^t
\]
Recall from calculus classes. Consider $f(x) = \left(1 - \frac{1}{x}\right)^x$. We know that

$$\lim_{x \to \infty} f(x) = \frac{1}{e}$$

If $t = \alpha n$, then the probability that t iterations of the loop fail to generate a prime is given by

$$\left(1 - \frac{1}{n}\right)^t = \left(1 - \frac{1}{n}\right)^{\alpha n} \approx \exp(-\alpha)$$

Conclusion about the running time of the Generate_Prime Algorithm. Now, we can conclude that the algorithm runs the loop t-times and does not find a prime number is at most $\exp(-t)$.
Our objective is to construct the `Is_Prime` algorithm.

Ideally, we will like the following input/output behavior from the `Is_Prime` algorithm. In the following table, we write the probability that the algorithm says true/false conditioned on the fact that X is a prime or composite.

<table>
<thead>
<tr>
<th></th>
<th><code>Is_Prime</code> says true</th>
<th><code>Is_prime</code> says false</th>
</tr>
</thead>
<tbody>
<tr>
<td>X is a prime</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X is a composite</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Read the following as follows. Conditioned on the fact that X is a prime number, we want `Is_Prime(X)` to return true with probability 1. And, conditioned on the fact that X is a composite number, we want `Is_Prime(X)` to return false with probability 1.
This algorithm should run in time that is polynomial in $x = \log X$, the number of bits needed to represent the number X.

This ideal algorithm was discovered in 2002 by Agrawal–Kayal–Saxena. In practice, this algorithm is not used for primality testing because this turns out to be too slow.

In practice, we use a randomized algorithm, namely, the Miller–Rabin Test, that successfully distinguishes primes from composites with very high probability. In this lecture, we will study a basic version of this Miller–Rabin primality test.
Miller–Rabin Primality Testing Algorithm

- Suppose we implement the Is_Prime algorithm using the Miller–Rabin Primality Testing Algorithm. This is a randomized algorithm with one-sided error. It takes as an additional parameter t and assures the following:

<table>
<thead>
<tr>
<th></th>
<th>Is_Prime says true</th>
<th>Is_prime says false</th>
</tr>
</thead>
<tbody>
<tr>
<td>X is a prime</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X is a composite</td>
<td>$\leq 2^{-t}$</td>
<td>$\geq 1 - 2^{-t}$</td>
</tr>
</tbody>
</table>

- When X is a prime number the algorithm does not err! However, when X is a composite number, the algorithm might mistakenly declare it as a prime with probability 2^{-t}. So, we say that it has one-sided error.

- The running time of the algorithm is polynomial in x (the number of bits needed to represent the number X) and t.

- For example, we can test the primality of a 1000-bit prime with confidence $1 - 2^{-500}$ in running time that is polynomial in $x = 1000$ and $t = 500$.

Generating Primes
In this section, we aim to implement the Is_Prime test using the basic Miller–Rabin test.

The basic Rabin–Miller test that we shall learn in this class _nearly_ works. Except that for some _very weird_ inputs X it messes up badly. These very weird inputs are composite, however, the basic Miller–Rabin algorithm return true (i.e., it mistakenly declares it as a prime number).

These _very weird_ composite numbers are called the Carmichael numbers. There are infinitely many Carmichael numbers. Otherwise, we could have tested if X belongs to this finite set! However, the good news is that, they are very sparse. Erdös proved that the total number of primes $< N$ is given by

$$N \exp \left(n^{\lambda \log \log n} \log n^{\lambda \log \log n} \right),$$
where \(\lambda > 0 \) is a constant and \(n \) is the number of bits needed to represent \(N \). So, it is very unlikely that a random number being tested for primality is, in fact, a Carmichael number. The smallest Carmichael number is \(561 = 3 \cdot 11 \cdot 17 \).

What will Basic Rabin–Miller achieve? The guarantees are summarized below.

<table>
<thead>
<tr>
<th>(X)</th>
<th>(\text{Is_Prime} \text{ says true})</th>
<th>(\text{Is_prime} \text{ says false})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X) is a prime</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(X) is Carmichael</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(X) is a composite but not Carmichael</td>
<td>(\leq 2^{-t})</td>
<td>(\geq 1 - 2^{-t})</td>
</tr>
</tbody>
</table>

Atomic Test. Consider the following loop
Basic Miller–Rabin Test

1. Pick $\alpha \leftarrow \{1, 2, \ldots, X - 1\}$
2. Compute $\beta = \alpha^{X-1} \mod X$
3. If ($\beta == 1$): Return pass
 Else: Return fail

Recall that we have proven in the homework that $\alpha^{X-1} = \alpha \mod X$ for a prime X, for any $X \in \{1, \ldots, X - 1\}$. So, we can conclude the following.

<table>
<thead>
<tr>
<th>X is a prime</th>
<th>Atomic Loop says pass</th>
<th>Atomic Loop says fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Carmichael numbers are such that, even though they are composite numbers, for every $\alpha \in \{1, \ldots, X - 1\}$ satisfies $\alpha^{X-1} = 1 \mod X$. So, we can conclude that
When \(X \) is composite number that is not a Carmichael number, we shall use the following result without proof.

Lemma

Suppose \(X \) is a composite number that is not a Carmichael number. Then, at least half of \(\alpha \in \{1, \ldots, X - 1\} \) satisfy

\[
\alpha^{X-1} \neq 1 \mod X.
\]

This result helps us conclude that the Atomic Loop will output fail with probability \(\geq 1/2 \). So, we can fill the final row in the table as

<table>
<thead>
<tr>
<th></th>
<th>Atomic Loop says pass</th>
<th>Atomic Loop says fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X) is a prime</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(X) is Carmichael</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Atomic Loop says pass</td>
<td>Atomic Loop says fail</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>X is a prime</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X is Carmichael</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X is composite</td>
<td>$\leq 1/2$</td>
<td>$\geq 1/2$</td>
</tr>
<tr>
<td>but not Carmichael</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Using Atomic Loop to get the Basic Miller–Rabin Test.** Suppose X is not a Carmichael number but is composite. Note that when we run the atomic loop once, the probability that the algorithm mistakenly says pass is $\leq 1/2$. Similarly, when we run the atomic loop twice. Then the probability that both loops say pass both times, is $\leq (1/2)^2$. If we run the atomic loop t-times, then the probability that all loops say pass is $\leq (1/2)^t = 2^{-t}$.

Note that if we say any one atomic loop report fail, then we know that X is composite (and not Carmichael). So, we consider the following algorithm.
Basic Miller–Rabin Test

\[
\text{Is_Prime}(X, t) \quad /*\text{Implemented using Basic Miller–Rabin Algorithm}*/
\]

1. For \(i = 1 \) to \(t \)
 1. \(\alpha \leftarrow \{1, 2, \ldots, X - 1\} \)
 2. \(\beta = \alpha^{X-1} \mod X \)
 3. If \((\beta \neq 1) \): Return false

2. Return true

The guarantee of this algorithm is

<table>
<thead>
<tr>
<th>(X) () is () a () prime</th>
<th>Is_Prime says true</th>
<th>Is_prime says false</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X) is a prime</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(X) is Carmichael</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(X) is a composite but not Carmichael</td>
<td>(\leq 2^{-t})</td>
<td>(\geq 1 - 2^{-t})</td>
</tr>
</tbody>
</table>