Lecture 08: Shamir Secret Sharing (Security Argument)

Developing Notion of Security I

The Setting

- We shall work over \mathbb{Z}_{p}, where p is a prime number
- We want to share to n parties and support t reconstruction, where $n \leqslant p-1$
- Let $\mathbb{P}[S=s]$ be the probability that the secret is s
- Recall, that the secret sharing algorithm samples a random polynomial $p[X]$ or degree $\leqslant(t-1)$ such that $p[X=0]=s$
- The secret shares of parties $\{1, \ldots, n\}$ are defined to be $p[X=1], \ldots, p[X=n]$
- For $i \in\{1, \ldots, n\}$, the random variable S_{i} represents the secret share distribution of the i-th party

Developing Notion of Security II

- Suppose parties i_{1}, \ldots, i_{k}, where $k<t$, are colluding
- Their respective secrets are $s_{i_{1}}, \ldots, s_{i_{k}}$
- We want to say that a secure secret sharing scheme provides no additional information about the secrets
- Mathematically, this is summarized as

Definition (Secure Secret-sharing Scheme)

For all $s \in \mathbb{Z}_{p}$ we have

$$
\mathbb{P}[S=s]=\mathbb{P}\left[S=s \mid S_{i_{1}}=s_{i_{1}}, S_{i_{2}}=s_{i_{2}}, \ldots, S_{i_{k}}=s_{i_{k}}\right]
$$

Developing Notion of Security III

A Clarification

- Suppose we want to share a message $s \in\{0,1\}$ among 4 parties such that any two of them can reconstruct it
- So, we choose $p=5$
- The probability of the secret is as follows

$$
\begin{aligned}
& \mathbb{P}[S=0]=0.9 \\
& \mathbb{P}[S=1]=0.1 \\
& \mathbb{P}[S=2]=0 \\
& \mathbb{P}[S=3]=0 \\
& \mathbb{P}[S=4]=0
\end{aligned}
$$

- The security of a secret-sharing scheme insists that even after seeing the secret-shares, the conditional distribution of secrets should remain the same

Developing Notion of Security IV

The outline for the proof of security for Shamir's Secret Sharing Scheme

- Remember, this is only a proof outline. You will prove the entire result formally in the homework

Developing Notion of Security V

- Consider the following manipulation

$$
\begin{aligned}
& \mathbb{P}\left[S=s \mid S_{i_{1}}=s_{i_{1}}, \ldots, S_{i_{k}}=s_{i_{k}}\right] \\
& =\frac{\mathbb{P}\left[S=s, S_{i_{1}}=s_{i_{1}}, \ldots, S_{i_{k}}=s_{i_{k}}\right]}{\mathbb{P}\left[S_{i_{1}}=s_{i_{1}}, \ldots, S_{i_{k}}=s_{i_{k}}\right]} \\
& =\frac{\mathbb{P}\left[p[X=0]=s, p\left[X=i_{1}\right]=s_{i_{1}}, \ldots, p\left[X=i_{k}\right]=s_{i_{k}}\right]}{\mathbb{P}\left[p\left[X=i_{1}\right]=s_{i_{1}}, \ldots, p\left[X=i_{k}\right]=s_{i_{k}}\right]} \\
& =\frac{\mathbb{P}[S=s] \cdot \overbrace{\frac{1}{p} \cdot \frac{1}{p} \ldots \frac{1}{p}}^{k \text {-times }}}{\overbrace{\frac{1}{p} \cdot \frac{1}{p} \ldots \frac{1}{p}}^{k \text {-times }}}=\mathbb{P}[S=s] \\
&
\end{aligned}
$$

Developing Notion of Security VI

The previous manipulation relied on the following two results

Claim

$$
\begin{gathered}
\mathbb{P}\left[p[X=0]=s, p\left[X=i_{1}\right]=s_{i_{1}}, \ldots, p\left[X=i_{k}\right]=s_{i_{k}}\right]=\mathbb{P}[S=s] \cdot \frac{1}{p^{k}} \\
\mathbb{P}\left[p\left[X=i_{1}\right]=s_{i_{1}}, \ldots, p\left[X=i_{k}\right]=s_{i_{k}}\right]=\frac{1}{p^{k}}
\end{gathered}
$$

You will prove this result in the homework.

